Month: February 2018

Promoting Elder Wellness with Artificial Light

Rod Smith

By: Rodney Smith
Director of Energy Independence for Emerald Skyline Corporation
Inventor of Bio-Light

 

Humans evolved on Earth over thousands of years before the invention of artificial light, under natural light 1conditions of sunlight, moonlight, and a relatively little bit of fire light. These natural light conditions are reflected inthe physical structure of the eye, with cones being tuned to daylight and rods to night time light conditions. Humans are diurnal (daytime) beings, while some other animals are nocturnal, so our normal pattern of wakefulness and activity is during the daytime.

There is another form of light sensor in the eye discovered more recently that does not contribute directly to sight yet plays a role in secretion of melatonin: the intrinsically photosensitive retinal ganglion cells (pRGC).

During the past ten years brain scientists have discovered that in addition to patterns of light being transmitted via the optic nerve to the visual center in the brain, there is also a branch that transmits data regarding light conditions to a command center in the brain called the suprachiasmatic nucleus (SCN).

Light and the Endocrine System

2

The SCN processes the light data and sends command signals to several glands in the endocrine system to either secrete or suppress secretion of certain hormones critical to normal body function. The pineal gland, in the hypothalamus in the brain, suppresses secretion of melatonin in the presence of bright white light, specifically when the SCN has identified a narrow 10 nanometer band of light spectrum (out of 330 nanometers of human visible light spectrum) from 450 to 460 nanometers.

 

 

3

Action spectrum for melatonin regulation in humans

When melatonin secretion is suppressed we become more alert. Melatonin secretion normally occurs when exposure to the bright white light diminishes, e.g. at sundown, but only does so if the trigger has been set by bright white light exposure earlier in the day. Melatonin also serves as a powerful antioxidant which floods the body with natural anti-cancer agents while we sleep.1

The adrenal gland is also largely controlled by the SCN based on light conditions in an opposite way from melatonin. Cortisol secretion is stimulated in the presence of bright white light and suppressed normally at night. Cortisol serves as a wake up call to the body, raising our core body temperature, heart rate, and blood pressure from a sleep state, and is also a factor in normal digestion. If the SCN does not signal the adrenal gland to secrete cortisol, we may be tired and listless. Changes in our digestive system could cause abnormal processing of foods especially carbohydrates and can be a factor in hypoglycemia associated with diabetes.3

Light and the Elderly

4People that lack exposure to natural sunlight are the most prone to have issues with mental and physical well-being resulting from abnormal hormonal secretion. Many elderly people lack adequate sunlight exposure. Furthermore the lens of the eye thickens and yellows with age, resulting in a 75% reduction in light passing through the lens by age 75. The yellowing of the lens reduces the blue end of the light spectrum where the circadian rhythm spectrum is found. The result can be sleep deprivation and the many issues that accompany it, including depression and circulatory issues, among others.

 

 

Spectral Power Density of GE "Natural Light" Fluorescent tubes

Spectral Power Density of GE “Natural Light” Fluorescent tubes

Unfortunately, traditional lighting does not provide the specific spectrum of light required between 450 and 460 nanometers for normal secretion and suppression of melatonin. Even with specialized “natural” light fluorescent tubes, the required light spectrum actually is at a low point in providing the critical spectrum while there are peaks on either side of the narrow band. The problem of proper light exposure cannot be solved by simply increasing the level of fluorescent light.

 

Spectral Power Density of LG 5630 LED at 6,500 Kelvin

Spectral Power Density of LG 5630 LED at 6,500 Kelvin

 

Fortunately, LED lighting is far more controllable in terms of light spectrum as well as in terms of dimming and low glare if well designed. Light being emitted from a source can be measured in spectral power density (SPD) at specific light spectrums measured in nanometers. It is possible to utilize LEDs in a fixture that has a perfect score of 100% SPD at the desired light spectrum. This is important, as the critical light spectrum can be passively delivered at reasonable levels of light in the ambient environment. Previously, light therapy devices required a patient to actively stare into a bright light box for two hours – which is an unpleasant experience to say the least – and not something many elderly residents can be expected to do. Delivery of the needed light spectrum passively will help assure all residents receive the desirable light and do not require active therapy.

If the LED fixture is designed as a side-lit panel, the light is indirect light and a pleasant glow to the eye, even at the higher light levels recommended by the Illuminating Engineering Society (IES) for elder care facilities. With traditional lighting it is very difficult to even achieve the recommended light levels in a tolerable manner, and impossible to provide the critical light spectrum for circadian light. Assuring that elderly residents have adequate light levels to enjoy their interests and hobbies will raise their activity levels and mental engagement.

Screen Shot 2018-02-28 at 5.21.19 PM

Spectral Power Density of LG 5630 LED at 2,700 Kelvin

There is a second part to the required light. While it is critical to have the bright white light especially in the morning, it is equally important to have warmer light with less blue light later in the afternoon and in the evening. If there is only bright white later in the day, melatonin secretion will continue to be suppressed.

LED lends itself to control so with modern wireless radio frequency control systems such as ZigBee, which is an IEEE telecommunication standard widely deployed by electrical power utilities to communicate wirelessly with smart meters and appliance among others, that facilitates implementation of automated lighting controls on a facility-wide basis for such functions as circadian light scheduling. By using an LED light fixture with both bright white and warm diodes, it is possible to control the light so the bright white is provided in the morning when needed and the warm light later in the day.

This is similar to how the light from the sun changes as the evening arrives. Furthermore, a ZigBee telecommunications platform can also connect with low cost light sensors to provide ambient light data to the control system that can adjust the level of intensity of the light as well as provide the capability to control other devices such as window blinds to further reduce energy consumption. The lighting system can also be linked through ZigBee to other automated sensor and control systems, such as fire detection and security systems.

In addition to the host of wellness benefits described above, LED lights can deliver up to 85% reduction in electricity consumption as well as providing maintenance-free lighting for up to 100,000 hours. For a light fixture on 24 hours per day, such as in a hallway, 100,000 hours of operation equals approximately 12 years. Light bulb maintenance is a significant component of facility maintenance and can free-up valuable employees to perform other maintenance tasks.

Recommendations

The flexibility of control of LED technology is arriving at a time when we can put it to good use for those living primarily indoors, as the elderly do. Opportunities now exist to deploy lighting designed to promote healthy endocrine system function. New eldercare facilities should be designed from a lighting perspective to IES standards, and they can also promote wellness of residents. The improved health can delay transition from Independent Living, to Assisted Living, to Skilled Nursing or Memory Care. In addition to the benefit to residents, making the most of LED capabilities can also reduce hospital transports, resulting in healthier bottom lines for operators.

For more information contact Rodney at [email protected] 

 

 

Footnotes:

1 The American Cancer Society www.cancer.com

2 Brainard, G.C. et al, Action Spectrum for Melatonin Regulation in Humans: Evidence for a Novel Circadian Photoreceptor, Journal of Neuroscience 21 (2001) 16, pp 6405-6412.

3 The Cortisol Awakening Response-applications and implications for sleep medicine, G.J. Elder, M.A. Wetherell, N.L. Barclay, J.G. Ellis, Sleep Medicine Review 2014 June; 18(3):215-24.

Additional Reading:

Light and Human Health: An Overview of the Impact of Optical Radiation on Visual, Circadian, and Neurobehavioral Responses, Illuminating Engineering Society, M.C. Figueira, G.C. Brainard, S. W. Lockley, V.L. Revell, R. White, TM-18-08, 2008

Lighting for Health: LEDs in the New Age of Illumination, United States Department of Energy, 2014 The Impact of Light in Outcomes in Healthcare Settings, A. Joseph, The Center for Health Design, 2006

CircadianDisturbanceinPatientswithAlzheimer’sDisease,D.A.Weldemichael,G.T.Grossberg, International Journal of Alzheimer’s Disease, 2010

Lighting and the Visual Environment for Senior Living, Illuminating Engineering Society, ANSI/IES RP-28-07, 2007

SIRT1 Mediates Central Control in the SCN by a Mechanism that Decays with Aging, H.C. Chung, L. Guarante, Cell 153, 1448-1460, 2013

The Cortisol Awakening Response in Context, A. Clow, F. Hucklebridge, L. Thorn, International Review of Neurobiology, NIH, 2010; 93: 153-75.

IoT, LEDs, lighting, and the future of workplace planning

In the real estate industry, understanding how our buildings are used is critical to understanding how to manage our buildings.

View the original article here.
By Brad Pease

blueprint

What is IoT and why is it useful to workplace planning?

IoT = Internet of Things: The interconnection of computing devices embedded in everyday objects, enabling them to send and receive data via the internet.

In the real estate industry, understanding how our buildings are used is critical to understanding how to manage our buildings. Buildings may be built of brick and mortar, but they are not static; they constantly evolve based on the needs of their occupants. People change their schedules and their locations within a building; and the people and technology that they need access to change too.

For building owners, understanding how your second highest investment (your real estate) interacts with your highest investment (your people) is critical to your company’s long-term financial success. Do you have too much space? Not enough? The right type of space? The right quality of space? These are all questions that you need a good source data to understand, and the dataset should allow you to trend how your building is used. This trending data empowers your workplace planning team to spot opportunities to make meaningful changes.

A new data source for workplace planning: IoT-connected lighting

Workplace planners need a device to collect data. Rather than adding a ton of sensors to a building – or worse, to people – designers need something that is in every room, and that indicates how the space is used. The answer is likely above you right now. It is indicating that you are present, and is tuned to the needs of your current task. The answer, of course, is the lights.

IOT lighting data can help owners establish a workplace design strategy. While this isn’t the typical use-case for lighting system data, it can be used to understand space utilization and adds a powerful dimension to workplace planning and decision making.

As every space in a building requires lighting, and the only reason we have lights is for people, lights are the ideal candidate to use as a data source; and lights don’t need a lot of added intelligence to be a great data source.  Here are three useful ways to track lighting data for workplace design:

  • Whether a light is on or off indicates if the room is occupied.
  • The number of fixtures or lighting scenes that are used in a room will indicate the type of function that is occurring in that room.
  • The total hours of fixture use can indicate the utilization of the space and, in the case of multi-use spaces, the most frequent activities that users engage in.

When all the above is tracked, trended, and analyzed, you will understand: which spaces in your building are used the most; which spaces don’t get used at all; and what type of spaces are over-used, potentially leading to resource constraint that your employees need to do their work. Trending the data across a building or campus will allow you to optimize your investment in changes to your real estate, perhaps allowing you to invest in a new way of using your space based on the best data sources available: your employees. That’s better than investing in a new building!

2

Powering LEDs through the Ethernet

The cost to implement an IOT lighting system can be reduced through the advancement in LED technology. Using LEDs reduce power consumption plus LED lights offer more options as to how to power those lights. LEDs are so efficient that it is possible to power them using an ethernet cord, eliminating a traditional power cord. Called Power Over Ethernet (POE), you can both control and power an LED light with one cord instead of two.  The cost to install a power cord is the same as the cost to run Ethernet, and it eliminates the need for wireless or additional control wires in the fixtures – which results in a lower cost of installation. And using POE, light fixtures are suddenly accessible for IoT uses because they are connected to a two-way data line.

Once you have Ethernet connectivity to every fixture, the controllability and data collection opportunities sky rocket. You don’t need smart fixtures – you need just one centralized smart controller that sends, tracks, and trends fixture use. Once connected to a cloud-based interface, facility managers and building owners are granted instant information on their building utilization. Simply add POE technology to your next lighting upgrade, and you’ll open a whole new data source for your workplace design strategy team.

3

The wellness connection: how a POE- and IOT-connected lighting system contributes to an optimal work environment

POE- and IOT-connected LED fixtures can be used to increase health and wellbeing along with optimized energy performance. LEDs can modify the spectrum of light being supplied, which in combination with dimming capability, allows a lighting designer to optimize a space for human cognitive performance.

Humans evolved outdoors for thousands of years before moving inside to work under artificial lighting. People perform better, feel better, and enjoy their surroundings more when connected to nature. And natural light has thousands of permeations a minute, and constantly changes to reflect the time of day, weather, and surrounding surface reflections.

LEDs can be tuned to match the natural cycles of daylight, with blue hues in the morning giving way to red hues in the evening. This circadian lighting pattern allows interior spaces to mimic the natural rhythms of the outdoors. Programming artificial lighting to match natural light, has proven to improve cognitive performance. It can also help building occupants to wake up, fall asleep quicker at night, and stay refreshed longer.

4

The future is bright

IoT-connected lighting is more than a technology trend; IoT-connected lighting allows us to find new uses for old things and reframe our understanding of items that were once viewed as static. Lights, their power, and their controls can provide a rich data source that will allow you to optimize your real estate and your people, which improves the future of your business. IOT-connected lighting takes the guesswork out of many real estate needs, contributing to sustainability and wellness.