Current Benefits

Net-Zero Energy Homes Pay Off Faster Than You Think—Even in Chilly Midwest

By Dan Gearino
View the original article here.

As solar and heat pump prices fall, these highly energy-efficient homes are paying for themselves faster. Here’s how they work and why they’re spreading northward.

Home-builder Bill Decker explains some of the techniques used to create highly energy-efficient homes in chilly southeast Michigan. New research shows that the extra cost of making a home net-zero energy can pay for itself in under a decade in Detroit and 11.4 years in Chicago. Credit: Dan Gearino

Home-builder Bill Decker explains some of the techniques used to create highly energy-efficient homes in chilly southeast Michigan. New research shows that the extra cost of making a home net-zero energy can pay for itself in under a decade in Detroit and 11.4 years in Chicago. Credit: Dan Gearino

 

LAMBERTVILLE, Mich.—On a drive down a country road, builder Bill Decker gives an off-the-cuff seminar about energy efficient homes.

He shifts from carpentry to electrical engineering, and then to theology—his belief that his faith compels him to take care of the earth. Every few minutes, he pauses and points out a house his family-owned company has built.

He has been in business since 1981 and only now is his industry beginning to grasp something he has been arguing for a while: Net-zero-energy homes—homes that are so efficient a few rooftop solar panels can produce all the electricity the home needs—can be built almost anywhere, even in places with brutal winters.

His case is bolstered by a recent report from the Rocky Mountain Institute showing net-zero energy houses can make financial sense in much of the Midwest as costs for some of the key components fall. The initial extra costs of making a new home a net-zero energy home pay for themselves through energy savings in less than a decade in both Detroit and Columbus, Ohio, and in less than 14 years in most of the 50 largest U.S. cities, the report says.

At the forefront are custom builders who specialize in efficient houses and helped to create this market, people like Decker, 79, whose southeastern Michigan company, Decker Homes, is just across the state line from Toledo, Ohio.

“It isn’t just energy efficiency we’re talking about here,” he says. “It’s the whole world. We’re talking about climate change.”

Indeed, housing is responsible for about 20 percent of U.S. greenhouse gas emissions, including its share of power plant emissions.

Yet his sales pitch is largely about comfort. An energy efficient house doesn’t have chilly drafts, and the temperature varies little from room to room, and those are things that appeal to most people, he says.

‘It’s the Little Things that Add Up’

Decker parks on the dirt driveway of a house in progress as a light rain turns to snow flurries. In a living room that is studs and bare wood floors, he notes the features that make this house highly energy efficient. The key is making insulation an essential part of construction.

Decker walks to the corner of the room and points out an opening of several inches between studs to allow for easy placement of insulation. Builders call this a “California corner,” which is an alternative to a typical corner design that is much more difficult to insulate.

“It’s little things that add up,” he says.

NZ 2

Zero-energy homes start with well-sealed and well-insulated attics, walls and basements or slabs. They often use triple-pane windows, especially in places with cold winters. Inside, energy-efficient appliances, highly efficient LED lighting and smart thermostats help avoid energy waste.

Their designs often take natural lighting into account, too, and position windows and overhangs for additional solar heating in the winter and shade in summer. Since the homes are sealed to avoid letting cold or hot air in—and cool or warm air out—they also have ventilation systems customized to maintain comfortable circulation.

Decker recently completed his first house with an air-source heat pump, which is less expensive than geothermal heat or other electric options. In cold weather, the system extracts heat from the outside air and uses it to maintain a comfortable indoor temperature. In warm weather, the process is reversed, with the system gathering heat from inside and transferring it outside.

He is starting to use air-source systems because newer models work well in below-freezing temperatures, which was not the case just a few years ago. Heat pump advancements are one of the main factors making highly efficient homes more affordable in many colder climates.

This is in addition to a cost factor that affects all climates: Rooftop solar prices have plummeted in recent years and are projected to continue doing so. That is true of battery power storage as well.

In Detroit, Net-Zero Pays for Itself in 9 Years

The costs and benefits of building net-zero houses vary widely in major cities, ranging from San Francisco, where the benefits would cover the costs in eight years, to Philadelphia, where it would take about three times as long, according to the Rocky Mountain Institute.

The largest savings tend to be in cities with high electricity rates and older building codes.

NZ 3

The key point is that energy efficiency pays for itself, which is not the case for many other major expenses in a house, said Jacob Corvidae, principal at Rocky Mountain Institute, a research nonprofit that focuses on clean energy.

“Zero-energy homes are actually affordable,” he said. This is important because many consumers, builders and policymakers are reluctant to consider zero-energy homes because of the perception that costs are prohibitive, he said.

In Detroit, for example, a 2,200-square-foot net-zero energy house would cost $19,753 more than the same house with no solar and typical efficiency. The energy-bill savings would be $2,508 in the first year, and the solar and efficiency costs would pay for themselves in about nine years with inflation and other changes taken into account.

Bill Decker's son, Dale, shows some of the construction methods used to insulate and seal a highly energy-efficient home against air leaks and energy waste. Credit: Dan Gearino

Bill Decker’s son, Dale, shows some of the construction methods used to insulate and seal a highly energy-efficient home against air leaks and energy waste. Credit: Dan Gearino

The Midwest is well represented among cities with short payoff periods. Detroit is second in the report. Columbus ranks fourth, with a payoff of less than 10 years. Chicago ranks 10th and Indianapolis is 12th, with payoffs of about 11 years and 12 years, respectively.

Detroit has high annual savings in part because the city has some of the highest electricity rates, Corvidae said. Columbus’ high savings are in part because the city has an older building code, so standard houses do not have high efficiency standards.

A home with all the energy efficiency attributes of a net-zero energy house but not the solar panels will save customers money even more quickly, the report notes, though it doesn’t provide all of the climate benefits. In Detroit, a “net-zero-energy ready” house without solar would cost $1,574 more than a typical house and would pay for itself in less than two years. After that, the investment means hundreds of dollars in savings for the homeowner every year.

New California Mandate Gets Close to Net-Zero

Net-zero energy homes are a fraction of 1 percent of new housing being built, but their share is growing. Builders completed 13,906 net-zero housing units last year in the United States and Canada, a 70 percent increase from the prior year, according to a report by the nonprofit Net-Zero Energy Coalition.

California was the leader with more than 5,000 units, five times more than runner-up Arizona, where the Rocky Mountain Institute report shows net-zero homes in Phoenix can cover their costs in 11 years.

California’s lead is likely to grow because of a state building code update that takes effect in 2020 and will require solar panels on most new housing and have strict efficiency standards, the first state to do so. The code falls short of a mandate for net-zero energy housing, but it comes close.

Meanwhile, some of the country’s largest home builders, such as PulteGroup and Meritage Homes, are taking steps to offer net-zero energy options. In Cortez, Florida, Pearl Homes is building a zero-energy community that also incorporates energy storage and electric vehicle chargers.

The corporate moves are tied to consumer demand and because energy efficiency is becoming more affordable, said Ann Edminster, a consultant and architect who works with the Net-Zero Energy Coalition.

“We’re starting to see the tip of that iceberg, and when it really hits, it’s going to be huge,” she said.

Bill Decker thinks many more people would want an energy efficient house if they only had someone to explain the benefits. In his part of the world, that someone is him.

“It’s creating value, saving money, helping the environment,” he said. “In the end, you say to yourself, ‘Why would you do anything else?'”

Florida development brings net zero homes to the mass market

A 148-home central Florida development may be the sign that net zero living has gone mainstream.

View the original article here.

Long-time builders Greg and Sue Thomas have opened Green Key Village, a 78-acre net-zero home development in Lady Lake, Florida, about 50 miles northwest of Orlando. The homes will be certified under the Florida Green Building Coalition, and one model home has already achieved a platinum rating, Thomas said. The homes will also be Energy Star and Department of Energy Zero Energy Ready Home. Each home will be HERS rated, and the goal is to achieve a HERS index of 50-55 prior to renewable energy installation. An average code built home has a HERS Index of 100.

Also, the homes have earned the Florida Friendly Landscaping silver designation in recognition of resource-efficient landscape design.

NZ 3

To help them with the challenge of selling a net-zero community, the Thomas’s brought on Tony Richardson to help them sell. With more than 30 years of experience in green home building and marketing, Richardson is a Green Designee of the National Association of Realtors, and a USGBC Green Associate.

Green Key Village is the first residential neighborhood in the nation designed using software offered by Ekotrope that was developed at the Massachusetts Institute of Technology. The software analyzes 10,000 variables to give designers data to compare each component of the home by its cost and energy efficiency. They can evaluate wall thickness, window size, insulation depth and every other aspect of the home. The development offers eight floor customizable plans in one- and two-story options. ranging from $318,000 to $414,000 and home sizes ranging from 2,755 square feet to 3,637 square feet.

Thomas said the Ekotrope analysis helped them make cost/benefit trade offs. For example, the home uses a 15-SEER rated air conditioning unit because the payback for a higher rated unit would have been longer than the life of the product. The analysis also showed that with the high-efficiency HVAC and a heat pump hybrid water heater, one of the most efficient on the market, the HVAC heat pump had to be only a 2.5-ton capacity in the 3,000-square-foot model home.

In an exclusive interview with ProudGreenHome.com, Greg and Tony talked about the challenges of presenting high performance, net-zero living to a mass-market real estate environment.

What was your vision for the community?

Greg: Where we live there’s a house with a big front porch and every afternoon the neighbors gather on that porch. In my mind, if all our houses had front porches I think it would be a great gathering place for neighbors to meet and fellowship. We wanted to build that kind of a neighborhood.

My dad was a builder, and I’ve been a builder for 30 years. It’s always been concrete block and stucco. That’s worn out. I said, let’s look for something different. We went to the coast, and saw houses with bright colors with lap siding, a metal roof and big windows covered with Bahamas shutters.

We put it out here in the middle of Lady Lake and have a great looking subdivision that isn’t made from a cookie cutter.

So that was our goal. We wanted to combine old Florida charm and new green living. I think we’ve hit it pretty good.

What are some of the challenges in communicating a high performance home to the general buyer?

Greg: I like to give them a brief overview and then back off until they ask more questions about it. It overloads them; actually, their eyes glass over when they’re just looking for the granite countertops.

It’s hard not to load them up with all the information, but we’ve spent so much money on this technology you hate to not to.

What makes your homes perform so well?

Greg: We used Ekotrope software to optimize the house design and balance all the HVAC loads, insulation and so on. We use open-cell spray foam on the underside of the roof deck, and the mechanical room is in the attic but it’s in conditioned space in the attic under the foam on the roof. Depending on the floor plan, the room can be 200 square feet to 500 square feet.

The GE heat pump water heater is in the room, and with it being a heat pump it keeps that area cooler and drier as it operates. It’s like having a dehumidifier up there. The manifold block plumbing system originates there too, right next to the water heater. And the HVAC ductwork is in there, too. It all works together.

It’s a nice attic room with stair leading to it homeowners could use for storage as well.

NZ 2

What are some of the green aspects of the home?

  • Icynene open-cell spray foam insulation
  • Advanced framing techniques
  • GE heat pump water heater
  • Two Panasonic energy recovery ventilators
  • Amana 15 SEER heat pump
  • Double pain Low-E windows from YKK
  • LED & CFL lighting
  • Energy Star appliances
  • WaterSense fixtures

What is the result of your green building strategies?

We cut the air conditioning load almost in half by going with the open cell spray foam insulation on the walls and ceiling. With the A/C, water heating, lighting and all the appliances are Energy Star rated, we’ve brought down our power usage on this house. Here an average house uses 1,500-1800 kilowatt/hours per month, and we’re down to less than 1,000. Then we take care of that with the solar panels.

 

NZ 3

What is your water conservation strategy?

As part of the Florida Green Building Coalition certification, we are certified to have less than a half-gallon of water in the lines. We use a maniblock plumbing system and PEX tubing.

Are you using advanced framing techniques, and how does that work with the wind load requirements?

We use regular 2×4 framing and what’s referred to as the “California corner,” two studs in the corners and we use horizontal blocking that gives you a nailing surface. You have to re-train your framers and help them remember that you can’t load up these corners with studs. We’ve heard of people going 24-inch centers but we haven’t gotten brave enough to do that.

All our homes have to be certified to meet 130 mph wind load. We use a solid sheathing with 4×10 OSB that helps fight uplift. Also the tie downs and anchors come into play to meet the wind load regulations.

Is there a price premium on the all the green attributes of the homes, and how do you communicate that to the buyers and the financial community?

From the water heater to the insulation the lighting to bath fans, to the ERV and solar panels, when you add all that up, the difference is $35,000 to $40,000 of additional value to the home.

We have prepared an addendum for our contract, because when you attach an addendum for the contract, the appraiser for the bank has to look at anything attached to the contract. For each model we have addendum that shows our cost for open cell spray foam insulation so and compare that to the traditional batt foam insulation on concrete block.

That also gives the homebuyer the documentation they need to apply for their solar tax credit.

How do buyers respond to the idea of a paying a premium for a high performance home?

We tell them, compared to an average $200 a month power bill, with the lower utility costs of these houses, you have $42,000 to $43,000 more power buying over the life of the mortgage. Whether you’re paying cash or using a mortgage, your overall buying power is that much more.

The math works. And you get a much a much healthier house. With the no-VOC paints, the low-VOC carpets and cabinets, your home is healthier. The ERVs are bringing in fresh air 24 hours a day.

Tony: These homes are priced very comparably to homes of similar size if they they had the same quality as these homes.

We can show on a cash-on-cash basis, they’ll be not spending more money but making money starting the first month and every month thereafter. There’s no flim flam here; it’s the truth.

Photos courtesy Green Key Village LLC.

Utilities are starting to invest in big batteries instead of building new power plants

By Jeremiah Johnson and Joseph F. Decarolis
View the original article here.

This is what a 5-megawatt, lithium-ion energy storage system looks like. Credit: Pacific Northwest National Laboratory

This is what a 5-megawatt, lithium-ion energy storage system looks like. Credit: Pacific Northwest National Laboratory

Due to their decreasing costs, lithium-ion batteries now dominate a range of applications including electric vehicles, computers and consumer electronics.

You might only think about energy storagewhen your laptop or cellphone are running out of juice, but utilities can plug bigger versions into the electric grid. And thanks to rapidly declining lithium-ion battery prices, using energy storage to stretch electricity generation capacity.

Based on our research on energy storage costs and performance in North Carolina, and our analysis of the potential role energy storage could play within the coming years, we believe that utilities should prepare for the advent of cheap grid-scale batteries and develop flexible, long-term plans that will save consumers money.

Peak demand is pricey

The amount of electricity consumers use varies according to the time of day and between weekdays and weekends, as well as seasonally and annually as everyone goes about their business.

Those variations can be huge.

For example, the times when consumers use the most electricity in many regions is nearly double the average amount of power they typically consume. Utilities often meet peak demand by building power plants that run on natural gas, due to their lower construction costs and ability to operate when they are needed.

All of the new utility-scale electricity capacity coming online in the U.S. in 2019 will be generated through natural gas, wind and solar power as coal, nuclear and some gas plants close. Credit: U.S. Energy Information Administration

All of the new utility-scale electricity capacity coming online in the U.S. in 2019 will be generated through natural gas, wind and solar power as coal, nuclear and some gas plants close. Credit: U.S. Energy Information Administration

However, it’s expensive and inefficient to build these power plants just to meet demand in those peak hours. It’s like purchasing a large van that you will only use for the three days a year when your brother and his three kids visit.

The grid requires power supplied right when it is needed, and usage varies considerably throughout the day. When grid-connected batteries help supply enough electricity to meet demand, utilities don’t have to build as many power plants and transmission lines.

Given how long this infrastructure lasts and how rapidly battery costs are dropping, utilities now face new long-term planning challenges.

Cheaper batteries

About half of the new generation capacity built in the U.S. annually since 2014 has come from solar, wind or other renewable sources. Natural gas plants make up the much of the rest but in the future, that industry may need to compete with energy storage for market share.

In practice, we can see how the pace of natural gas-fired power plant construction might slow down in response to this new alternative.

Grid-scale batteries are being installed coast-to-coast as this snapshot from 2017 indicates. Credit: U.S. Energy Information Administration, U.S. Battery Storage Market Trends, 2018.

Grid-scale batteries are being installed coast-to-coast as this snapshot from 2017 indicates. Credit: U.S. Energy Information Administration, U.S. Battery Storage Market Trends, 2018.

So far, utilities have only installed the equivalent of one or two traditional power plants in grid-scale lithium-ion battery projects, all since 2015. But across California, Texas, the Midwest and New England, these devices are benefiting the overall grid by improving operations and bridging gaps when consumers need more power than usual.

Based on our own experience tracking lithium-ion battery costs, we see the potential for these batteries to be deployed at a far larger scale and disrupt the energy business.

When we were given approximately one year to conduct a study on the benefits and costs of energy storage in North Carolina, keeping up with the pace of technological advances and increasing affordability was a struggle.

Projected battery costs changed so significantly from the beginning to the end of our project that we found ourselves rushing at the end to update our analysis.

Once utilities can easily take advantage of these huge batteries, they will not need as much new power-generation capacity to meet peak demand.

Credit: The Conversation

Credit: The Conversation

Utility planning

Even before batteries could be used for large-scale energy storage, it was hard for utilities to make long-term plans due to uncertainty about what to expect in the future.

For example, most energy experts did not anticipate the dramatic decline in natural gas prices due to the spread of hydraulic fracturing, or fracking, starting about a decade ago – or the incentive that it would provide utilities to phase out coal-fired power plants.

In recent years, solar energy and wind power costs have dropped far faster than expected, also displacing coal – and in some cases natural gas – as a source of energy for electricity generation.

Something we learned during our storage study is illustrative.

We found that lithium ion batteries at 2019 prices were a bit too expensive in North Carolina to compete with natural gas peaker plants – the natural gas plants used occasionally when electricity demand spikes. However, when we modeled projected 2030 battery prices, energy storage proved to be the more cost-effective option.

Credit: The Conversation

Credit: The Conversation

Federal, state and even some local policies are another wild card. For example, Democratic lawmakers have outlined the Green New Deal, an ambitious plan that could rapidly address climate change and income inequality at the same time.

And no matter what happens in Congress, the increasingly frequent bouts of extreme weather hitting the U.S. are also expensive for utilities. Droughts reduce hydropower output and heatwaves make electricity usage spike.

The future

Several utilities are already investing in energy storage.

California utility Pacific Gas & Electric, for example, got permission from regulators to build a massive 567.5 megawatt energy-storage battery system near San Francisco, although the utility’s bankruptcy could complicate the project.

Hawaiian Electric Company is seeking approval for projects that would establish several hundred megawatts of energy storage across the islands. And Arizona Public Service and Puerto Rico Electric Power Authority are looking into storage options as well.

We believe these and other decisions will reverberate for decades to come.If utilities miscalculate and spend billions on power plants it turns out they won’t need instead of investing in energy storage, their customers could pay more than they should to keep the lights through the middle of this century.

Emerald Skyline Provides Sustainability and Resiliency Assessments and Risk Ratings for Investors, Lenders, Insurers and Tenants.

“Recognizing the need for sustainability and resiliency due diligence, Emerald Skyline Corporation has developed a Sustainability and Resiliency Assessment (SaRA Rating©) Rating system to provide commercial real estate investors with a complete picture of the risk associated with a particular property or investment.”

BOCA RATON, FL, June 12, 2019

Today, Emerald Skyline introduces its’ Sustainability and Resiliency Assessment (SaRA Rating©) Rating system.   The purpose of the SaRA Rating© Report is to provide information on the sustainability and resiliency of a property given its physical and locational attributes. The property-specific, neighborhood and community together with information on natural and man-made hazards are assessed using Emerald Skyline’s Risk Assessment Rating System to enable investors, buyers, lenders, tenants and other stakeholders, including those who have a security interest in the mortgage, a meaningful gauge on the overall sustainability and resiliency of a property.

SaRA Rating© builds on due diligence information on a property to evaluate a property’s sustainability and resiliency which allows owners, managers and tenants to control and help reduce the rapidly increasing costs of utilities and insurance while reducing the carbon footprint and to understand the property’s resiliency in response to man-made and natural hazards and calamities.

According to MunichRe, an international reinsurance firm, 2018 was the fourth-costliest year for natural disasters in recorded history. The damage and destruction cost $160 billion, of which only half was insured. The worst damage came from Hurricanes Michael and Florence and Asian Typhoons Jebi, Signal 10 Mangkhut and Trami. The California wildfires alone cost $57 billion, of which slightly more than half, $29 billion, was insured.

The damage from natural disasters and extreme weather events– including blizzards, droughts, floods, heat waves, hurricanes, lightning strikes, tornadoes, tsunamis, earthquakes, mudslides, volcanoes and wildfires – cost the US economy a staggering $307 billion in 2017 – more than double the inflation adjusted average of $140 billion.

Of significance to these astounding statistics is the frequency with which natural disasters and extreme weather events are occurring: In 2018 there were 29 events that cost at least $1 billion each in damage while there were 16 events costing more than $1 billion each in 2017. The United Nations has found that the number of natural disasters per year has doubled in the last 20 years.

It no longer makes sense to wait until after a crisis to implement resilience efforts. Resiliency strategies for buildings should be identified and implemented now, so there is a greater chance of improved performance and reduced risk to both people and property, not only today but for the future, benefiting all building stakeholders.

Buildings and businesses do not operate in a vacuum. The evaluation of the sustainability and resiliency of a building is significantly influenced by the neighborhood and community in which it is located. For instance, a building may have hardened exterior skin, wind impact windows and design and equipment protected from flood or wind intrusion, but if the community is nor resilient, the building and its tenants may not be able to recover quickly after a storm. Accordingly, the SaRA Rating© assessment, evaluates both the physical attributes of the subject property and the resiliency of the community in which it is located.

The damage from natural disasters and extreme weather events– including blizzards, droughts, floods, heat waves, hurricanes, lightning strikes, tornadoes, tsunamis, earthquakes, mudslides, volcanoes and wildfires – cost the US economy a staggering $307 billion in 2017 – more than double the inflation adjusted average of $140 billion.

Of significance to these astounding statistics is the frequency with which natural disasters and extreme weather events are occurring: In 2018 there were 29 events that cost at least $1 billion each in damage while there were 16 events costing more than $1 billion each in 2017. The United Nations has found that the number of natural disasters per year has doubled in the last 20 years.

It no longer makes sense to wait until after a crisis to implement resilience efforts. Resiliency strategies for buildings should be identified and implemented now, so there is a greater chance of improved performance and reduced risk to both people and property, not only today but for the future, benefiting all building stakeholders.

Buildings and businesses do not operate in a vacuum. The evaluation of the sustainability and resiliency of a building is significantly influenced by the neighborhood and community in which it is located. For instance, a building may have hardened exterior skin, wind impact windows and design and equipment protected from flood or wind intrusion, but if the community is nor resilient, the building and its tenants may not be able to recover quickly after a storm. Accordingly, the SaRA Rating© assessment, evaluates both the physical attributes of the subject property and the resiliency of the community in which it is located.

SaRA Ratings

According to Paul Jones, a principal of Emerald Skyline, “armed with the SaRA Rating© and report, the stakeholders can incorporate current and prospective tenant/user demand for the space in the building given the cost of occupancy and resiliency as well as investor demand and potential pricing for the asset. A resilient and sustainable asset will combine low-cost operations due to sustainably-reduced energy and maintenance costs and managed insurance expenses while maximizing the net cash flow and long-term value of the property.”

Emerald Skyline Corporation is a sustainability and resiliency consulting and LEED project management firm formed in 2012 by veteran real estate professionals to facilitate the sustainability and resiliency of the built environment by advising and assisting building owners, managers, tenants and other stakeholders in the evaluation, selection and implementation of sustainable and resilient strategies and practices.

To find out more information about Emerald Skyline’s Sustainability and Resiliency Assessment Rating system, please contact Paul Jones at pjones@emeraldskyline.com or call him at 786-468-9414

Israel Completes World‘s Largest Solar & Thermal Electric Facility

By David Lazarus
View the original article here.

The state-of-the-art thermal electric power plant in Israel’s Negev Desert is equipped with more than 50,000 computer-controlled heliostats that produce enough power for 150,000 homes, keeping 110,000 tons of CO2 emissions out of the air per year.

The Ashalim solar and thermal electric power plant in Israel’s Negev Desert is up and running. The state-of-the-art facility is equipped with more than 50,000 computer-controlled heliostats or mirrors, which can track the sun in two dimensions and reflect the sunlight onto a boiler placed on top of a tower measuring 240 m-high (787.4 ft). That’s higher than some of the tallest sky scrapers in the world and by far the tallest solar tower ever built.

How does it work? All those tens of thousands of mirrors are hooked up to a computer operated tracking system so that they all move precisely with the orbit of the earth around the sun throughout the day and direct the heat from the sunlight to a spot on the boiler on top of the tower to within 0.0015499969 of an inch. The super hot water in the boiler produces superheated steam, which is then conveyed through pipes down below with enough pressure to spin a steam turbine-generator at astronomical speeds needed to produce electricity. The solar run generator can put out 300 megawatts of clean electricity every day, or enough to power about 150,000 homes.

Ashalim construction in 2016 – BrightSource Energy website

Ashalim construction in 2016 – BrightSource Energy website

Another feature of the Ashalim project is the use of solar thermal technology that can store energy for use at night in order to provide consistent and reliable output of electricity. This is one of the largest renewable energy projects in the world. The facility covers an area of over 3 sq. km (2 sq. miles).

Israel’s climate is ideal for solar power, particularly in the Negev which enjoys more than 300 sunny days a year. Israel has been home to many solar technology breakthroughs, but the government has been slow in getting away from using fossil fuels for power. But that is definitely starting to change with a goal getting 10 percent of its energy needs from renewable sources by 2020 with the new solar project. Once the project is proven fully successful, Israel plans to move ahead rapidly towards renewable energy sources.

Together with the recent discovery of huge deposits of natural gas along Israel’s Mediterranean Coast, the Ashalim plant will contribute to Israel’s security by reducing dependence on fossil fuel imports. It will also keep us safe by keeping 110,000 tons of CO2 emissions per year out of the air we breathe.

How IoT Plays A Role In Developing Sustainable Transportation

sustainable transportation iot
By Megan Nichols
View the original article here.

The Internet of Things is transforming the modern world in manifold ways. It’s making our homes smarter, our stores more connected and informed, our vehicles more powerful, and our equipment — especially the industrial variety — more capable.

“IoT” is a blanket term that refers to the entire network of connected devices, from smartphones to household appliances. IoT devices have the ability to connect with local or public networks to transmit, receive and process data streams. This means that, as a society, we can collect a lot more information about how our devices are operating. It also means we can interface with them remotely to do things like open a garage door or turn on a light from hundreds of feet or even miles away.

This technology offers a variety of benefits, including more efficient use of resources and improved sustainability practices. That’s especially true of the transportation sector and modern travel.

Airports and Air Travel

The IoT provides an added layer of convenience for customers and better sustainability for parent companies.

For customers, the technology can be used to improve their travel experience. Miami International Airport, for example, relies on connected smartphone applications to provide real-time information to passengers about campus events and locations, baggage claim info, boarding instructions and more.

As for airports themselves, the technology can help eliminate excess waste produced as a result of high energy use. Smart bulbs and connected light fixtures, for instance, can turn off lights in empty areas of the campus. Efficient thermostats can better regulate and coordinate air temperatures within the facility — not just for keeping people more comfortable, but also to use less power in the process.

Logistics and Public Transportation

Whether you’re talking about buses, above-ground trams, or high-speed trains, the logistics involved are incredible. A transport company must consider how much room they have, how many people have booked a trip, what’s changed — such as who’s canceled or joined — and even how much luggage or storage space is available.

But it doesn’t stop there. Vehicles need fuel, supplies, and maintenance — and they’re all directly tied to a strict and comprehensive schedule. Like you see with flights, if a bus or other transport is late, it affects the entire day’s schedule.

IoT technology can help with this by providing more nuanced and real-time details about the goings-on within a facility or transport. This provides much more oversight for transportation managers and planners, if not automating the entire field outright.

GPS modules can be used to track each transport with up-to-date stats like speed, fuel levels and arrival times. Bluetooth beacons can be used to deliver local information to customers’ phones and devices, with real-time alerts about delays or on-time schedules.

There’s incredible potential here, and the industry is definitely starting to catch on.

Smart Roads

As you’d expect, smart and connected roads can help manage traffic patterns, accident response, and other related problems. Imagine receiving traffic updates on your phone directly from the very road beneath your vehicle’s tires. Highways and street surfaces can be outfitted with advanced sensors to collect usage information, which is then fed into a municipality’s traffic infrastructure. The system would be connected to traffic lights, security cameras, smart roads and much more.

It’s essentially a comprehensive modern and smart traffic management system. Sensors could pick up the impact of an accident, for example, and report that information to a remote agency or even take action via the network. As a result, nearby drivers are informed of the crash, traffic lights are changed to reflect the issue, and vehicles are rerouted until the area is cleaned up.

The technology can also be used for public road services like tollway, bridge and tunnel management — and even parking meters in urban areas.

Smarter Parking

Imagine pulling up to a parking meter, paying your fee on a mobile app, and then exiting your vehicle to be on your way. Upon your return, you simply hop in your car, tell the meter you’re leaving and away you go. The system registers the open space and alerts other drivers nearby looking for a space. As a result, the nearby roadways remain clear and less congested.

In urban areas and bustling cities, parking can be a real problem for the entire community. It can cause traffic disruptions and delays, accidents, and even dangerous scenarios — like when a vehicle is parked in front of a fire hydrant or unauthorized area.

Disney’s new parking garages in Disney Springs, Orlando, are a great example of how parking is getting smarter. Each parking row has a series of lights that turn red or green depending on whether or not space is available. As the end of each row is a digital display that shows the number of open spaces. It’s all updated in real-time so drivers can find a space quickly without driving around aimlessly. The system can also be used to locate vehicles for guests who are lost.

Supply Chain Management

In addition to self-driving transport vehicles and fleets, various other forms of transport in the supply chain are being outfitted with IoT technologies. This includes shipping trucks, containers, boats and ships, planes and more.

This provides a great deal of insight for management crews about travel times and external factors such as traffic or weather events. As with public transport, technology can be used to make more efficient use of resources like fuel as well as cut down on overall waste. More importantly, it can be used to identify new routes, transport solutions and even operational improvements.

Smart, Connected Technologies Are the Future

In the consumer market, IoT devices can help homeowners use their power supply more efficiently by cutting down on consumption, making better use of it in general and offering several new functions. Smart thermostats, for example, can auto-regulate heating and cooling in the home to make the space more comfortable and also eliminate excess use of electricity.

The same thing is happening in transportation, only on a much greater level. When an entire public transport operation is outfitted with more efficient vehicles and fuel-measuring sensors, for instance, the impact is much larger.

This shows that IoT and related connected technologies are not just a fad confined to modern-day operations — they are absolutely going to shape the future of the world. Backed by powerful data and insights, the organizations of tomorrow will be more efficient, more sustainable and much less impactful on the environment.

Warren Buffet’s MidAmerican Energy puts in Iowa’s latest big battery project

Grand Ridge, an existing Invenergy project that combines wind power and energy storage, in Illinois. Image: Invenergy.

Grand Ridge, an existing Invenergy project that combines wind power and energy storage, in Illinois. Image: Invenergy.

View the original article here.
The US state of Iowa got its first grid-scale solar-plus-storage system at the beginning of this year, and this has already been followed by the completion of another, larger battery project in the US state this week.

Energy-Storage.news reported last week on the completion of a solar PV system at Maharishi University of Management equipped not only with solar trackers but also with a 1.05MWh flow battery.

This week, project developer Invenergy said a four month “construction sprint” had been successfully undertaken and the company has begun commercial operations of a 1MW / 4MWh lithium iron phosphate battery energy storage system.

Located at a substation in Knoxville, Iowa, the project has been executed for utility MidAmerican Energy, one of billionaire investor Warren Buffet’s companies as a subsidiary of Berkshire Hathaway Energy. MidAmerican serves just under 800,000 electricity customers.

In a November press release, MidAmerican’s VP of resource development said the utility-scale storage system would teach lessons about “how best to use an energy storage system, and how it can serve our customers in the future,” adding that the primary purpose of the system will be to help manage peak loads on the utility’s network.

“Energy storage has the potential to allow us to retain energy when customer demand is low and release it during peak usage times. That would give us new options to manage peak loads, enhance overall reliability and help keep electric costs low and affordable for our customers,” Mike Fehr of MidAmerican Energy said.

The utility highlighted four of the main benefits of energy storage that it will explore through the application of the lithium system: flattening and managing peaks in electricity demand through storing off-peak energy for later use, reducing the required run times and capacities of natural gas peaker plants with energy storage, enhancing the value and usefulness of renewable energy through smoothing the output of solar farms before it enters the grid and improving power quality and extending the life of transformers and other grid infrastructure.

“Energy storage is still in the development stages and the economic feasibility on a larger scale is being assessed as well; however, prices are trending downward,” Mike Fehr said.

“MidAmerican Energy wants first-hand experience with the technology so we’re positioned to quickly and efficiently add it to our system in ways that benefit our customers when the price is right.”

For Invenergy, which already owns and operates four other large-scale battery systems it developed, this has been its first project as an EPC (engineering, procurement and construction) partner.

“We are excited by the new opportunities for battery storage that we are seeing around the country. We are grateful for partners like MidAmerican Energy who are seeking innovative ways to deliver value to their customers and are proud to have provided them with this solution in such a short time,” Invenergy senior VP Kris Zadlo said.

Five Financial Benefits of Using C-PACE (In Language Your CFO Will Understand…)

By Larry Derrett, Founder, EnFlux Building Solutions
You can view the original publishing of this article here.

CPACE
The C-PACE funding program has grown extensively and has the potential to become a game changer for the funding of energy efficiency projects. The market potential is immense, and the benefits of the program are compelling. But it is relatively underutilized. For the program to accelerate its growth, constant messaging is required for building owners, contractors and legislators to learn about the benefits of the program. Out of all these stakeholders, perhaps the building owner’s CFO is the most important target as they are the key decision maker when considering this type of funding.

My goal here is to provide a snapshot of the financial benefits of using C-PACE. This article is purposefully narrow in scope and is written in the CFO’s language.

C-PACE Testimonial

As of June 30, 2018, building owners have chosen the C-PACE program to fund 1,790 projects. That’s a 75% increase above the 1,020 projects closed through the end of 2016. However, it’s just the tip of the iceberg for C-PACE’s market potential. Financial decision makers all over the US have validated the benefits of C-PACE 1,790 times. That says something about the program.

“As a former CFO, I would not hesitate to recommend C-PACE to the CEO, board or investors. The benefits are compelling.”

Why? Let’s look at five reasons.                                                                     

#1. Increase Net Cash Flow from Efficiency Retrofits

C-PACE funding is repaid through a 20+ year assessment to a building which is collected similarly to traditional property taxes. This causes annual payments to be very low, especially when compared to 5- or 7-year traditional financing. As a result, energy and maintenance savings will exceed the annual C-PACE assessment for virtually any pure efficiency retrofit. In other words, if companies use C-PACE to fund pure equipment retrofits, their cash flow will increase.

The positive net cash flow can also ease the ability of commercial office building owners to pass along the costs and benefits of a retrofit to tenants. That’s because it’s easier to demonstrate savings will cover financing costs spread over 20 years versus a more traditional repayment period of ~ 7 years.

This is a win-win. Building owners receive an upgrade to the building that could last 15 to 20 years. Tenants enjoy lower overall net expenses and a more comfortable work environment.

What is outlined above is reason enough for many to use this type of funding. But that’s just scratching the surface…

#2. No Acceleration of the Assessment

The C-PACE lender is not allowed to accelerate the full amount owing even if a scheduled payment is past due. Only the unpaid amount that has been billed but not paid is recoverable. This is a very small amount when compared to the capital involved in a total debt restructuring. Therefore, it should not carry enough voting power to complicate the restructuring process.

#3. Freedom to Sell the Building

The C-PACE lender does not have approval rights regarding a sale. That’s because the assessment is an attachment to the building and becomes an obligation of the buyer. This eases how owners can optimize holdings, particularly for larger commercial real estate developers.

#4. Absence of Constraints Typically Imposed by a Lender

The C-PACE lender does not impose traditional lender protections such as quarterly reporting, maintenance of debt covenants or similar requirements. There is no need for an inter-creditor agreement and the building owner has one less creditor to deal with in case of a debt restructuring.

#5. Reduced Weighted Average Cost of Capital

This applies primarily to new construction and major renovations where the project is part of a new or restructured capital deck. The concept is simple – to the extent lower cost C-PACE funding can be used in lieu of higher cost equity (common or preferred) or traditional mezzanine debt, it lowers the overall cost of capital to building owners.

As mentioned earlier, an important element in C-PACE’s continued growth is for CFOs to understand the financial benefits of the program. You can help get the word out by sharing this article with financial decision makers in your network. If they are not familiar with C-PACE, they will appreciate the heads up. And please comment below if you have encountered additional financial drivers for embracing C-PACE.

The World’s Biggest Solar Project Comes With a ‘Batteries Included’ Sticker

By Brian Eckhouse and Mark Chediak
View the original article here.

The world’s biggest-ever solar project — a $200 billion venture in Saudi Arabia — comes with a “batteries included” sticker that signals a major shift for the industry.

SoftBank Group Corp. partnered with the oil-rich Saudis this week to plan massive networks of photovoltaic panels across the sun-drenched desert kingdom. The project is 100 times larger than any other proposed in the world, and features plans to store electricity for use when then sun isn’t shining with the biggest utility-scale battery ever made.

The daytime-only nature of solar power has limited its growth globally partly because the cost of batteries was so high. Utilities that get electricity from big solar farms still rely on natural gas-fired backup generators to keep the lights on around the clock. But surging battery supplies to feed electric-car demand have sent prices plunging, and solar developers from California to China are adding storage to projects like never before.

Cheaper Batteries

Costs are expected to drop in half by 2025 as factories ramp up battery production

“The future is pretty much hybrid facilities,’’ said Martin Hermann, the CEO of 8minutenergy Renewables LLC, a U.S. company that’s expecting to include batteries in the vast majority of the 7.5 gigawatts of solar projects it’s developing.

Affordable batteries have long been the Holy Grail for solar developers. Without them, some of the best U.S. solar markets, like California, have too much of electricity available at midday and not enough around dusk when demand tends to peak.

Wind Wins

While the solar industry has grown, it still accounts for less than 2 percent of U.S. electricity supply and has been outpaced by investments in other green technologies. Wind farms are set to overtake hydroelectric plants next year as the biggest source of renewable energy in the U.S., accounting for more than 6 percent of the nation’s electricity generating capacity, government data show.

Now, the economics of storage is shifting. The price of lithium-ion battery packs tumbled 24 percent last year, according to Bloomberg New Energy Finance, and the U.S. is allowing solar-dedicated storage to qualify for a federal tax credit. More utilities and local energy providers are mandating that new solar farms include batteries to store power.

Adding batteries to solar plants could revolutionize the industry. California has contemplated going all-renewable by 2045. It won’t be able to do that without storage, said Kevin Smith, chief executive officer of SolarReserve LLC, a solar project developer that uses molten-salt energy-storage technology.

More Control

“Storage just adds control,” said Logan Goldie-Scot, a San Francisco-based energy storage analyst at BNEF. “In a number of markets, you are seeing customers seeking a greater deal of control.”

By the end of 2018, it’s possible that U.S. utilities may be asking for batteries on every solar project proposed, said Ravi Manghani, an energy analyst at GTM Research. That would mean the country is about to embark on a major battery boom. Only about 1 gigawatt of storage had been installed in the U.S. through the third quarter, according to BNEF.

Several large developers already are proposing storage units as part of their projects, including NextEra Energy Inc.

Cypress Creek Renewables LLC, which builds clean-power plants, is contemplating batteries at every one of its early-stage solar projects, according to Chief Executive Officer Matthew McGovern. The company installed batteries at 12 solar farms last year.

The shift isn’t just in the U.S.

The Saudi-SoftBank project calls for an astonishing 200 gigawatts of generating capacity that would be built over the next decade or so, with the first electricity being produced by the middle of next year. Based on BNEF data, the project would dwarf the total solar panels that the entire photovoltaic industry supplied worldwide last year.

Evening Hours

A key feature of the project will be the construction of “the largest utility-scale battery” in two to three years that will supply “evening hour” power to consumers, Masayoshi Son, SoftBank’s founder, told reporters in New York this week.

Tesla Inc., the Palo Alto, California-based carmaker that’s building batteries with Panasonic at a giant factory in Nevada, will supply the storage units for a solar project in the Australian state of Victoria. Houston-based Sunnova Energy Corp. is selling solar and battery systems in Puerto Rico, where Hurricane Maria devastated the island’s power grid in September and tens of thousands of people still don’t have electricity.

China-based Trina Solar Ltd., once the world’s largest maker of photovoltaic panels, is seeking to invest 3.5 billion yuan ($556 million) in integrated energy projects this year that could include power generation, distribution grids and storage, Vice President Liu Haipen said Wednesday in an interview in Beijing. Most of the investment will be in China, but the company is exploring opportunities in Germany, Spain, Australia and Japan, he said.

Cheaper batteries are even providing a boost in the residential market for solar systems.

“It’s a game-changer,” said Ed Fenster, executive chairman of San Francisco-based Sunrun Inc., the largest U.S. installer of residential solar systems. “The demand that we’re seeing is outstripping our expectations.”

— With assistance by Stephen Cunningham, Vivian Nereim, and Feifei Shen

Mapping the Boom in Global Solar Power

By Molly Lempriere
View the original article here.

Solar power is growing faster than any other renewable energy in the world, according to new research by the IEA. But where in the world is the technology booming the most?

Solar is growing at speed in several states, including Utah, Arizona, and Nevada, and looks set to continue this trend through this year and beyond.

Solar is growing at speed in several states, including Utah, Arizona, and Nevada, and looks set to continue this trend through this year and beyond.