Well Building Certification and How We Plan to Achieve It in Boca Raton



By Julie Lundin, Founder, LEED AP ID+C, NCIDQ, ASID
Director of Sustainable Interior Design for Emerald Skyline Corporation


Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. Our renovation includes many sustainable features with the intent to obtain LEED certification from the USGBC. In addition, we hope to achieve a “wellness” standard certification, WELL or Fitwel. Our project has gone through many design changes throughout the renovation process however sustainability and a healthy built environment continue to be a priorityI have written about the USGBC LEED Certification previously. This article focuses on “well” certifications that are available to those who want to impact and improve the health and well-being of people through the built environment. Design plays a significant role in human health.   Designing for wellness (salutogenic design) is a measurable aspect of design that can help a building’s inhabitants operate at their peak effectiveness, maintaining physical and mental well- being, helping them to lead healthier, and therefore longer lives. It is the ultimate investment in people, in an architectural sense.

The WELL Building Institute has developed a holistic approach to health and well-being in interior places where we live, work and play by using the WELL Building Standard, which aims to transform indoor environments by placing health and wellness at the center of design and construction decisions. The WELL Building Standard focuses on seven major areas: air, water, nourishment, light, fitness, comfort and mind.

Design is frequently associated with the concepts of beauty, color, texture and other aesthetic attributes; all of which were taken into consideration during the design of our building. However, as an Interior Designer and LEED AP, it was also important to incorporate one of the most powerful elements of building and space design which is the opportunity to impact and improve the health and well-being of our occupants. Below are some of the strategies that we applied in our project to the Well Building Standard seven concepts of Well building:


  • We selected low VOC materials and those with no harsh chemicals to reduce off-gassing of VOC’s to limit the likelihood that occupants come into contact with harmful, harsh chemicals
  • Our building has no permanent wall-to-wall carpeting, an open space plan for easy and effective cleaning
  • Incorporating natural and biophilic elements such as plants, a living wall, and natural materials.


  • Encourage hydration of our occupants by placing a water dispenser with fresh citrus in the design studio area for easy access to all.
  • Installation of a reverse osmosis water filtration system to enhance water quality and taste.
  • Additional energy efficient refrigerator with a filtered water container for cold water that is not bottled.


  • Our space has been designed to provide a full kitchen to occupants so that they may prepare or store healthy meals.
  • Numerous seating areas are available to encourage gathering and sharing meals.
  • Fresh fruits, vegetables and nuts will be out on a regular basis for healthy snacks.


  • We have specified BioLight ( healthy LED light fixtures that provide appropriate lux and equivalent melanopic lux levels to prevent eye strain while also aligning with the body’s circadian rhythm.
  • Reduced glare by positioning light fixtures strategically, provide task lighting, and install an exterior awning to provide shading at the windows.
  • Daylight was considered in the installation of large windows on the south façade of the building to allow for access to natural light and views of the outdoors.


  • Our building is one story with an open space plan which encourages occupants to move frequently and interact with each other.
  • The grounds of the property will contain a water element, butterfly garden, and green outdoor seating areas to encourage time spent in nature.
  • We have installed two showers and bicycle storage to promote active transportation and exercise.


  • Select furniture that enables our occupants to be more active during the work day and offers an alternative to prolonged sitting. We have designed numerous collaboration areas with comfortable sofas and chairs.
  • Our open space plan and newly installed ADA bathroom provides an equitable environment for any occupants with physical disabilities.
  • We have included both collaboration and quiet areas so that occupants can be acoustically comfortable and select their more productive environment depending on their activity.


  • We have created a beautiful, collaborative space so our occupants and associates will be happy to spend time there
  • Incorporated biophilic design with a living wall, large windows, and natural elements to allow occupants to be connected to nature even while indoors.
  • We have designed the space to have cozy and relaxing areas in addition to the productive work spaces This includes a loft that encourages the opportunity for relaxation and refuge with time spent reading and meditating.


The Fitwel Certification System is a unique building certification system that positively impacts occupant health and productivity through an integrated approach to workplace design and operations. Fitwel’s development was led by the U.S. Centers for Disease Control and Protection (CDC) and the General Services Administration (GSA). It is an evidence based approach as research by the CDC has shown that health promotion through programs, policies and environmental changes can improve employee health and productivity, with potential savings in healthcare costs. The Fitwel scorecard was developed by experts in public health, facility management and design. Each criterion is linked by scientific evidence to (at least) one of seven health impact categories.

We are confident that our design decisions will enable us to achieve a Well Certification. It is of the utmost importance that our project enhances the quality of life and health of all who spend time there. We encourage this forward way of designing and hope to see many Well Certified buildings in the future.


Commercial Building Project Update

JulieBy Julie Lundin, Founder,
Director of LEED Process Management for Emerald Skyline Corporation

Emerald Skyline’s repurposing of our commercial building located in Boca Raton, FL is progressing and changing as we go through the development process. We have concluded the Planning Advisory Review and are now working on the Site Plan Application. As with any project, basic requirements must be met. These may include zoning, future land use designation, and city codes. One city code we were hoping to get an exception for is the Floor Area Ratio (FAR). The FAR is governed by the zoning district regulations applicable to each property. Based on our property’s zoning our “floor area ratio” – the floor area of our building divided by the lot area in square feet, cannot exceed 0.4. Since our project is registered as a LEED project we were hopeful that an exception to the 0.4 FAR could be made. The response regarding this issue during the Planning Advisory Review is that according to City Code, no variance may be granted which has the effect of increasing the intensity/FAR on a plot or parcel.

The adherence to the required FAR has presented us with design challenges resulting in both positive and negative impacts for the project. The property on which our building is located and it’s required setbacks is not large enough to accommodate any outward (horizontal) added square footage. Therefore, our option to increase the building size is by building up (vertical). This requires that a structural engineer is engaged to beef up the existing foundation and wall structure under the new space to ensure that it can support the added weight. With the addition of a second story, a stairwell has to be utilized which will use some of our already limited square footage. We have also decided to include an elevator which impacts the design and available square footage of the building. The height restrictions of 30’ based on the zoning district does not impact the addition of a second floor including the elevator shaft. The elevator component is a key design element to the exterior elevations.

The FAR of 0.4 has required us to significantly reduce the size of the second floor addition than we originally designed and wanted. This has impacted the layout of both floors and require that we re-think what is important to be included and where. As designers we have learned that what initially is perceived as negative impacts can actually lead to a better designed project. The second floor is now smaller but the green terrace is larger. This allows for more roof top vegetation and promotes a peaceful, connected to the environment space for the occupants. For more in-depth information on the benefits of a green roof please see Kendall Gillens’s post from last month’s newsletter “Vegetation is Not Solely for Landscape: The Benefits of a Green Roof”.

We are now preparing the drawings and documentation for the Site Plan Application. The site plan requires many issues to be addressed; parking, ingress and egress, landscaping, exterior lighting, ADA requirements, water and sewer, fire and life safety, etc. One of requirements of the site plan is to provide the design of the dumpster enclosures and their location on the property. Our property has very limited space which must accommodate many different elements to meet codes. The project is LEED registered with the intent to obtain the highest level of LEED certification that is possible. Sustainable design and LEED certification should positively impact all phases of a building including its design, construction and operation. We are proposing our building will be a zero waste facility in which no trash is sent to landfills or incinerators. Our goal is to send no garbage to the landfill. We will utilize new avenues for any waste and think creatively in terms of reducing, reusing and recycling. An example of this initiative will be the creation of an organic garden located at the rear of the building to process and compost organic materials to create a product that can be used to enrich the soil. Additionally, we will send materials that can be repurposed to innovative companies that will use the waste to create new products. We also plan to install portable carts with several recycling receptacles to facilitate the collection and sorting of waste materials. Our company will transport the recyclables to the recycling facilities. No commercial waste hauling will be contracted and there will be no dumpsters on the property.

We will pursue a dumpster deviation request from the City of Boca Raton and a Zero Waste Facility Certification. This is a third-party certification and we will need to meet all of its requirements. One requirement which is important is that our policy meets all federal, state, and local solid waste and recycling regulations. A zero waste facility will meet criteria to earn points toward LEED certification.

Our site plan will also contain a bicycle rack, an electric charging station for cars and pervious pavement rather than asphalt. For more information on pervious pavements please see our post “Exploring Permeable Pavement Options for LEED Projects”.









Zero Waste Business Facility Certification

Inspired by the Zero Waste business community, the U.S. Zero Waste Business Council and its Certification Development Committee have created the first third-party Zero Waste Business Certification program for facilities that meets the Zero Waste Principles of the Zero Waste International Alliance (ZWIA). Our facility certification program goes beyond diversion numbers and focuses on the upstream policies and practices that make Zero Waste successful in an organization. We have crafted the facility certification to meet the requests of Zero Waste Businesses for a valid, comprehensive verification of their Zero Waste achievements.


The USZWBC 3rd Party Zero Waste Business Certification does the following:

  • Supports ZWIA definition of no waste to landfill, incineration and the environment
  • Drives the development of new markets and new ideas towards a Zero Waste Economy
  • Meets Zero Waste Businesses request for valid and comprehensive third party certification
  • Focuses on upstream policies and practices beyond diversion or recycling
  • Emphasizes strong Total Participation: Training of all employees, ZW relationships with Vendors and customers

Requirements for Certification

1. Zero Waste policy in place
2. 90% overall diversion from landfill and incineration for non-hazardous wastes

-Discarded materials are reduced, reused, recycled, composted or recovered for productive use in nature or the economy at biological temperatures and pressures
-Materials can be processed above ambient biological temperatures (>200° F) to recover energy from the 10% residual, but they do not count as part of the 90% diversion
-Reused materials (office furniture, pallets, paper, etc.) are eligible to count as part of the 90% diversion requirement

3. Meet all federal, state/provincial, and local solid waste and recycling regulations
4. Data provided to USZWBC has been published formally
5. Data documents a base year and measurements since the base year
6. Commit to submit 12 months of data to USZWBC annually (Data submitted will be public and published on the USZWBC website)
7. Case Study of Zero Waste initiatives can be published on USZWBC website
8. Recertification is required every three years
9. Contamination is not to exceed 10% of each material once it leaves the company site

Sustainable Building Design

By Julie Lundin, LEED AP ID+C,
Principal, Emerald Skyline Corporation

Our project in Boca Raton is being designed to become a LEED certified building. The U.S. Green Building Council’s (USGBC) Leadership in Energy and Environmental Design (LEED) green certification system is a tool for evaluating and measuring achievements in sustainable design. LEED consists of a set of perquisites and credits with specific requirements for obtaining points in order for a building to become LEED certified.

Many people are not familiar with the concept of sustainable design and how it relates to building construction and ongoing building operations. The built environment impacts our natural environment, our society and our economy. This concept is often referred to as the 3 P’s, people, planet and pocketbook. Sustainable design attempts to balance the needs of these areas by integrating design solutions.


EPA 2004

The main objectives of sustainable design are to reduce or avoid depletion of natural resources such as energy, water, and raw materials; prevent environmental damage caused by buildings and their infrastructure; and create livable, comfortable and healthy interior environments.

Sustainable design does not just apply to new construction; retrofitting of existing buildings should be an option and can be more cost-effective than building a new facility. With our project, we opted to retrofit as well as reposition an existing building rather than allowing further decay of the property or demolishing it and building new. My future posts will focus on specific details and products that we will utilize in our sustainable design process.

While the definition of sustainable building design continues to evolve, according to the Whole Building Design Group (WBDG) Sustainable Committee there are six fundamental principles that persist. References to some of our sustainable design solutions that will be written in upcoming posts are included below in the fundamental principles.


Optimize Site Potential

Creating sustainable buildings starts with proper site selection, including the reuse or rehabilitation of existing buildings.

  • We chose a contaminated site and remediated the property.
  • The project is an abandoned auto body garage that will be repurposed rather than demolished.

Location, orientation, and landscaping of a building affect ecosystems, transportation methods, and energy use.

  • A south facing orientation will enable us to harness solar energy and utilize the sun for daylighting within the structure.
  • Proximity to major bus and train lines provides alternative transportation.
  • The use of native plants and rainwater collection

Optimize Energy Use

It is essential to find ways to reduce energy load, increase efficiency, and maximize the use of renewable energy resources.

  • Solar energy via solar panels
  • LED lighting
  • Daylight Harvesting
  • Energy efficient windows, appliances, and HVAC

Protect and Conserve Water

Fresh water is an increasingly scarce resource; a sustainable building should use water efficiently, and reuse or recycle water for on-site use.

  • Cistern and water collection
  • Low flow toilets, sinks, and appliances
  • Grey water use where allowed

Optimize Building Space and Material Use

Available resources are stressed to due demands for additional goods and services. A sustainable building is designed and operated to use and reuse materials, environmentally preferable materials have a reduced effect on human health and the environment.

  • Shared uses for small building space
  • Low VOC paints, sealants and adhesives
  • Use of reclaimed wood

Enhance Indoor Environmental Quality (IEQ)

The IEQ of a building has a significant impact on occupant health, comfort, and productivity. A sustainable building maximizes daylighting, has appropriate ventilation, moisture control, optimizes acoustic performance, and avoids the use of materials with high-VOC emissions.

  • Low VOC paints, sealants and adhesives
  • Flush out building before occupancy
  • Thermal Comfort Control
  • Provide quality views

Optimize Operational and Maintenance Practices

Encourage optimal operations and maintenance systems during the design and development phases, specify materials and systems that simplify and reduce maintenance requirements; require less water, energy and toxic chemicals. Include meters to track sustainability initiatives, reductions in energy and water use and waste generation.

  • Energy and water metering
  • Recycling Waste Plan
  • Building Envelope Commissioning


Utilizing a sustainable design philosophy encourages decisions at each phase of the design process that will reduce negative impacts on the environment and the health of the occupants, without compromising the bottom line. It is an integrated, holistic approach that encourages the balance of people, planet and pocketbook. An integrated approach of sustainable design should positively impact all phases of a building, including design, construction and operation.


LEED Project Update




By Julie Lundin, Founder,
Director of LEED Process Management for Emerald Skyline Corporation


Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. This distinctive commercial building will include many sustainable features with the intent to obtain LEED certification from the USGBC.















Proposed LEED Certified Building

For general information on this project please Click Here to see our last post.

We have been busy working on the design and drawings in preparation for submission to the City of Boca Raton Development Services Department. The design of the building has taken many twists and turns over the last few months. Since we are doing a major renovation and constructing a second floor, the design and location of the stairs and an elevator have been instrumental in our building’s design. As with any project, the site plan and its setbacks limit the building footprint that will be utilized.

Based on our site plan, we do have the space to bump the front of the building out to accommodate our new staircase. This allows us to construct the stairs without having to penetrate the existing building ceiling membrane. In addition, it creates an interesting design element that does not deduct precious square footage for the stairs construction.

We have also decided to locate the elevator on the outside of the building. Again, an exterior location will not deduct square footage from the base building plan. Since the elevator shaft will be located on the exterior, building fire codes will be different than if the elevator was located internally. We are anticipating that the elevator will be a prominent design feature and contribute to the aesthetics of our project.

As stated in our previous post, this project is a proposed LEED certified building. A key component of a LEED project is its reduced energy use. Our initial design utilized solar rooftop panels to generate power for the building even with the hopes of generating enough power to sell back to the grid. Florida’s large utility monopolies and lawmakers have worked successfully to block and control who can generate solar energy and what it can be used for; thereby restricting its use by homeowners and businesses. The Florida legislature, at the direction of the utility companies, have gutted the state’s energy savings goals and entirely eliminated Florida’s solar-rebate program. Due to this situation, we are now exploring alternative methods of energy including fuel cell technology powered by natural gas.

There is a pro-solar group in Florida, Floridians for Solar Choice, that is seeking to make solar more accessible in the state. Their ballot petition seeks to expand solar choice by allowing customers the option to power their homes or businesses with solar power and chose who provides it to them. Please visit their website to learn about this initiative and sign the petition.

Welcome to Sustainable Benefits – Let’s begin with the benefits of doing a commercial building sustainable retrofit….


PJ Picture
By Paul L. Jones
, Founder,
Director, Financial Advisory Services for Emerald Skyline Corporation


“Who is more foolish: The child afraid of the dark or the man afraid of the light?” (Maurice Freehill, British WW I flying ace).

Figure 1 Empire State Building - LEED Gold

Figure 1 Empire State Building – LEED Gold

Throughout my 36-year career in commercial real estate, commercial buildings have generally been classified from A to C based on location, construction quality and tenancy. Class A buildings represent the cream of the crop. They secure credit-quality tenants, command the highest rents, enjoy premium occupancies, are professionally managed and have a risk profile that supports lower cap rates and higher values. Class B buildings are similar to Class A but are dated yet not functionally obsolete. Class C buildings are generally over 20 years old, are architecturally unattractive, in secondary or tertiary locations and have some functional obsolescence with out-dated building systems and technology. NOTE: No formal international standard exists for classifying a building, but one of the most important things to consider about building classifications is that buildings should be viewed in context and relative to other buildings within the sub-market; a Class A building in one market may not be a Class A building in another.

Based on years analyzing investments in income properties, it appears to me that in the recovery from the Great Recession the commercial real estate market has evolved to include energy efficiency and environmental design as a requirement for improving the marketability of a building – not to mention optimizing its operating income and value.


On December 1, 2014,, in an article entitled “GSA Verifies Impact of Green Facilities,” reported that a study conducted by GSA and the Pacific Northwest Laboratory conducted a post-occupancy study of Federal office buildings, which varied in age and size and had been retrofit to reduce energy and water consumption. The following results were based on a review of one year of operating data and surveys of the occupants which was compared to the national average of commercial buildings: High performance, green buildings:

  • cost 19% less to maintain
  • Use 25% less energy and water
  • Emit 36% fewer carbon dioxide emissions
  • Have a 27% higher rate of occupant satisfaction.

One of the most famous sustainable retrofit projects undertaken was the updating of the 2.85 msf Empire State Building whose ownership directed that sustainability be at the core of the building operations and upgrades implemented as part of the $550 million Empire State ReBuilding program. According to Craig Bloomfield, of Jones Lang LaSalle (JLL), “After the energy efficiency retrofit was underway, JLL led a separate study of the feasibility study of LEED certification” which “showed that LEED Gold certification was within reach at an incremental cost of about $0.25 psf.

Graphics on financial benefits of high-performance buildings

Source: Institute for Market Transformation: Studies consistently show that ENERGY STAR and LEED-certified commercial buildings achieve higher rental rates, sales prices and occupancy rates.

Source: Institute for Market Transformation: Studies consistently show that ENERGY STAR and LEED-certified commercial buildings achieve higher rental rates, sales prices and occupancy rates.

According to the report “Green Building and Property Value” published by the Institute for Market Transformation and the Appraisal Institute, a trend is emerging where green buildings are both capturing higher quality tenants and commanding rent premiums. As indicated by the above graph summarizing four national studies for commercial office buildings back up this trend on rents and occupancy, as “certified green buildings outperform their conventional peers by a wide margin.”

  • According to the website, “Transwestern Commercial Services, a national full-service real estate firm, has generated impressive returns through sound energy management. In 2006, Transwestern invested over $12 million in efficiency upgrades, for an average 25% energy savings. The Company estimates that dedication to energy management has increased the portfolio’s value by at least $344 million.”
  • According to John Bonnell and Jackie Hines of JLL – Phoenix, “In Phoenix, owners of LEED-certified buildings can capture a premium of 29 percent over buildings without this distinction.” The premium for Green buildings had disappeared during the Great Recession and reemergence in the first quarter of 2014 as a result of improving Phoenix market dynamics which is being realized in other major markets as well.


For retail buildings, the tenants are driving the shift to sustainability with green building as consumers become increasingly aware of the environment and the need to reduce, reuse and recycle. According to the “LEED in Motion: Retail” report published by the USGBC in October 2014, “LEED-certified retail locations prioritize human health: among their many health benefits, they have better indoor environmental quality, meaning customers and staff breathe easier and are more comfortable. In a business where customer experience is everything, this is particularly valuable.’ Green retail buildings also out-perform conventional buildings and generate financial savings:

  • On average, Starbucks, which just opened their 500th LEED-certified store, has realized an average savings of 30% in energy usage and 60% less water consumption.
  • McGraw-Hill Construction, which surveyed retail owners, found that green retail buildings realized an average 8% annual savings in operating expenses and a 7% increase in asset value.

It is noteworthy that, according to the third annual Solar Means Business report published by the Solar Energy Industries Association, the top corporate solar user in the United States is Walmart. In fact, almost half of the top-25 solar users are retailers (the others are Kohl’s, Costco, IKEA (9 out of 10 stores are solar powered), Macy’s, Target, Staples, Bed Bath & Beyond, Walgreens, Safeway, Toys ‘R’ Us, and White Rose Foods). Other Top-25 solar users with a significant retail footprint include Apple, L’Oreal, Verizon and AT&T.

In the competitive retail market, the study also noted that being distinguished for pro-active and responsible corporate social responsibility attracts customers and investors.


In a study of 236 apartment complexes conducted by Bright Power and The Stewards of Affordable Housing released last July, 236 properties in two programs, HUD’s nationwide Green Retrofit Program and the Energy Savers program available from Illinois’ Elevate Energy and the Community Investment Corp. One year of pre- and post-retrofit utility bills were analyzed. The researchers found the following:

  • Properties in the Green Retrofit Program had realized a 26% reduction in water consumption – or $95/unit annually.
  • The energy consumption in the Green Retrofit Program was reduced by 18% representing an annual savings of $213/unit.
  • Surveyed buildings in the Energy Savers program had reduced gas consumption by 26% and had reduced excess waste by an average of 47%.
  • The water saving measures in the Green Retrofit program reflected a simple payback period of one year while the energy savings measures had a simple payback period of 15 years.

In an article be Chrissa Pagitsas, Director – Multi-family Green Initiative for Fannie Mae, reports that 17 multifamily properties have achieved Energy Star® certification with two of them, Jeffrey Parkway Apartments in Chicago and ECO Modern Flats in Fayetteville, Arkansas, receiving financing from Fannie Mae.

  • The Eco Modern Flats complex is over 40 years old. With the goal of reducing operating expenses, the project was retrofit in 2010 with energy and water efficiency improvements including low-flow showerheads and faucets, dual flush toilets, ENERGY STAR® certified appliances, efficient lighting, closed-cell insulation, white roofing, solar hot water and low-e windows. As a result of the retrofit, the property achieved a 45% reduction in water consumption, a 23% drop in annual electricity use including a 50% savings in summer electricity consumption while increasing the in-unit amenities, obtaining LEED Platinum certification and increasing occupancy by 30% resulting in a significant increase to Net Operating Income.

Multi-family properties made sustainable gain a competitive advantage in marketing to young professionals and other target audiences who prefer to live in an environment that is healthy and energy-efficient which saves money on utilities.


In a 2014 study conducted by Cornel University, researchers compared the earnings of 93 LEED-certified hotels in the US to 514 non-certified competitors. The study included a mix of franchised, chain and independent facilities in urban and suburban markets with three-quarters of the properties having between 75 and 299 rooms.

The results show that green or sustainable hotels had increased both their Average Daily Rate (ADR) and revenue per available room (RevPAR) with LEED properties reporting an ADR that was $20.00 higher than the non-certified properties (prior to certification, they reported an ADR premium of $169 vs. $160).

The researchers noted that these premiums were realized in price-competitive markets and that the amount of the premium was unexpected. From the results, they concluded that Eco-minded travelers were willing to pay a modest premium to stay at a verified green facility.

Further, the savings realized in electricity and water usage as well as reductions in waste disposal fees and costs as well as reduced maintenance costs go straight to the bottom line resulting in increased Net Operating Income. Here are some examples:

  • The Hampton Inn & Suites, a 94-room facility in Bakersfield, had REC Solar install carport-mounted solar panels which is offsetting 44% of the electricity costs, or up to $8,800/month – adding over $100,000 to the property’s bottom-line.
  • The 80-room Chatwall Hotel in New York completed an LED lighting retrofit project mid-year 2014 which will result in a first year savings of almost $125,000. The cost: just about $1.00 per LED light after rebates.

According to Flex Your Power and ENERGY STAR® statistics, the hospitality industry spends approximately $4 billion on energy annually with electricity, including the HVAC system, accounting for 60% to 70% of utility costs. In fact, excluding labor, energy is typically the largest expense that hoteliers encounter and the fastest growing operating expense in the industry ( The EPA has concluded that even a 10% improvement in energy efficiency is comparable to realizing a $0.62 and $1.35 increase in ADR for limited service and full service hotels, respectively.

Many studies show that hotels do not realize the full benefit of many energy efficiency measures as guests feel no obligation to employ sustainable practices and wastes the opportunity for savings afforded by the hotel’s energy efficiency measures; however, almost half realize savings in excess of 20% reflecting that many operators have found ways to enlist guest cooperation in saving electricity and water.

According to the US Energy Information Administration (EIA) 2012 Commercial Buildings Survey, the United States had approx. 87.4 billion square feet of floorspace in 5.6 million buildings that were larger than 1,000 sf which also excluded heavy industrial manufacturing facilities. Ninety percent of the buildings that will exist in2035 have already been built – and buildings consume 80% of energy used in cities worldwide and represents almost 20% of all energy consumption in the United States.

Source: US Department of Energy 2013 Renewable Energy Data Book, 1/22/2015

Source: US Department of Energy 2013 Renewable Energy Data Book, 1/22/2015


The evidence is clear – building and operating sustainably pays dividends – in improved NOI from cost savings and increased revenues. Attracting higher quality tenants, improving market perception and reducing risk indicates that going Green is becoming a key for maintaining the Class of a building – keys to improving long-term values through lower cap rates.

So, why aren’t more building owners and managers going green? We will seek to discern this matter in our next Sustainable Benefits.

A Multi-Pronged Approach to Building Efficiency

December 11, 2013

Part 1: Five Years of Advancing Deep Retrofits

View the original post here


Since 2009, RMI’s work to advance deep energy retrofits has focused on a multi-pronged approach to scaling: 1) collaborate with project teammates, owners, and other fast movers who learn from and copypioneering deep retrofit projects, 2) engage entire portfolios and campuses of buildings to impact more than scattered singular building retrofits, and 3) develop new, better, and more comprehensive ways of assessing risk and value associated with deep green buildings, to drive greater investment by financial decision makers.

In today’s part one of a three-part series, we take a look at RMI’s work advancing deep retrofits. (Read parts two and three.)

Five years ago RMI embarked on a body of work to advance what we call deep retrofits, energy-efficiency retrofits that save 50 percent or more of a building’s energy consumption. Half a decade later, it’s time to reflect on how far we’ve come with our Retrofit Initiative … and how far we still have to go.

First, though why a focus on such profound energy efficiency? For starters, we care a lot about eliminating wasted energy, and that’s what most building energy consumption is: waste. But this is about more than simple waste. Done well and timed right, eliminating that waste makes good money. Further—and maybe most importantly—a highly efficient building (whether new or upgraded) is more comfortable, healthier, enables higher productivity, and generally entices people to stay in it longer. Finally, it’s increasingly important for employers and institutions alike to be able to say, and show, that they occupy high-quality, green buildings that perform both financially and environmentally. Real estate markets, especially in certain regions, are waking up to a new and powerful competitive dimension that RMI is helping create!

Our Buildings Practice is working on all these dimensions, mostly in commercial buildings. Five important examples form the core of our retrofit work on individual buildings; work aimed at “Making Old Buildings Better Than New (Ones).” They are:

  • Empire State Building (New York City)
  • City-County Building (Indianapolis)
  • IMF Headquarters 1 (Washington, D.C.)
  • Byron Rogers Federal Building (Denver)
  • The Clark Museum (Williamston, MA)

And while our initial engagement on such projects was funded by the projects themselves, everything that followed, including educating the buildings industry and scaling solutions, comes form donor-funded dollars. Buildings work is often slow to show results. The work only just starts with the conceptual and system-level interventions that RMI has pioneered. Several years often pass before the physical work is done and the “verdict” is in with real measurements showing results. Fortunately for RMI, some of our focus has also been on helping advance the role of sophisticated modeling tools that give a very good sense of what to expect. For some of our fab five examples, the full story is still not in, but the answer is pretty clear. And the change we expect in the world is beginning to happen because of these results.

The Empire State Building

As one of the most famous buildings in the world, the Empire State Building (ESB) is well known, and so is its deep retrofit, one of the first ever in the world on a commercial building. While not yet completed in all tenant space, it is already clear that the retrofit will save more energy than the 41 percent modeled—and command far higher rents.

But the project was notable as well for what followed—RMI’s subsequent work crafting a replicable methodology for deep energy retrofits, sharing lessons learned, building free tools for service providers, and meeting with government officials about the economic benefit of promoting deep energy retrofits. This follow up profoundly moved the market. Over the past two years, ESB design team members alone have begun the process of replicating their own versions of the deep retrofit model in close to 100 large buildings across the country, many in New York. Inside sources say the Empire State Building energy retrofit was a key factor in launching New York City’s groundbreaking Local Law 84: Commercial Building Energy Benchmarking. New York’s benchmarking efforts have spurred eight more municipal and state building energy disclosure policies in major U.S. cities, with more emerging. And RMI helped shape other city and New York state programs aimed at energy savings in buildings.

The City-County Building

Our next project after ESB was a famous—but infamously inefficient—government office building in Indianapolis. Many had tried to fix it. But both money and ideas were limited, and it was still a potential gold mine of energy waste when RMI was invited to help. That was in 2009. One year later, Indianapolis mayor Greg Ballard announced energy-efficiency upgrades for the building expected to reduce energy consumption 35 percent annually. Design-build firm Performance Services executed the retrofit under a performance contract that guaranteed $750,000 in energy savings per year for 15 years, completing the $8 million project at no cost to taxpayers. By 2012, the City-County Building had reduced its annual energy use by 46 percent and earned prestigious ENERGY STAR certification.


The Byron Rogers Federal Building

The Byron Rogers Federal Office Building followed on the heels of our City-County Building work. RMI teamed up with a major contractor, Mortenson, in 2010 and presented an aggressive plan to aim for net zero. This mid-century modern office building renovation—largely completed, but not yet fully re-occupied—is a powerful case study for dramatically improving performance of existing buildings through integrative design, regardless of barriers such as misaligned government mandates, historic designation, multiple tenants, hazardous materials, and poor orientation. This project work also formed the foundation of donor-funded focused studies and educational material on managing plug loads.

Building upon the Byron Rogers project, RMI worked further with the U.S. General Services Administration (GSA) to better understand tenant issues. Working on another important accelerator—the service industry that executes the work—RMI teamed again with the GSA to prove that energy service companies (ESCOs) can be primary drivers and implementers for achieving deeper energy savings in buildings. Funded partly by donors, this effort intervened with sixteen of the largest ESCOs in the U.S. with a goal to introduce them to strategies for deep energy retrofits and to identify and overcome barriers to achieving the deepest efficiencies. Over the course of our partnership with GSA, average projected energy savings from the deep program’s ESCO engagements at GSA has already more than doubled to 39 percent from 18 percent. This marks a significant positive change in the “MUSH” institutional and government market that seldom achieved more than shallow savings and has in recent years been using ESCOs largely for lighting and equipment finance only—a case of leaving barrels of money on the table!

IMF Headquarters 1

At the same time as Byron Rogers, RMI had an opportunity to reshape how things are done in the nation’s capital, a sea of opportunity in the form of large, inefficient office buildings crowding the streets around the government buildings on the Mall. The client was the International Monetary Fund. Once again, RMI played a different role, not as a bidder for a project, but as part of a team to shape the brief for those bidders—to tell them what to do, in other words. After extensive option and life-cycle cost analysis the pre-bid team came up with a doozie: a winning project would need to cut energy use in half and meet other explicit financial and performance targets. Here is how the proud client talks about it: “The improvement under way will provide a more modern and energy-efficient setting. Energy bills will fall by nearly half—saving between $2 million and $2.5 million per year…”

The project is under construction now, to be completed in 2016. Importantly, the execution team, led by architect Skidmore, Owings & Merrill and engineer WSP Flack and Kurtz, will drive the insights and processes into the Washington real estate world and beyond.

The Clark Museum

One final test project was a real challenge: the Clark Museum on the campus of Williams College in Massachusetts. The opposite of the IMF project, where RMI helped shape what bidders would be asked to do, at Clark RMI was brought in after a design for a significant addition and retrofit was already almost complete. Way too late, we thought. But we wanted to test what was possible in this “worst case” situation where the key was a motivated owner (supported by a significant donor).

The problem in a building such as a museum—as in a laboratory as well—is achieving energy savings while maintaining a strictly controlled internal environment that protects art and artifacts in a curatorial environment. RMI identified and recommended opportunities to double HVAC energy savings compared to the design team’s energy model. Needless to say, the Clark (and RMI) donor backing the work was very happy … and recently sent a note saying so. The results are in, and the energy savings are rolling in as expected.

Scaling Our Impact

These exemplary projects are commendable, but the real goal is to spread their lessons and ideas far and wide. That’s why we created the RetroFit Depot as an extensive and compelling Web-based resource for building owners and professionals considering energy retrofits, including our acclaimed Deep RetroFit Guidelines. One consulting firm in Chicago says they used our guidelines as a foundation for twenty deep retrofit roadmaps within the Retrofit Chicago – Commercial Buildings Initiative. Our Buildings Practice staff members have presented over 100 educational sessions on how to plan for and conduct deep energy retrofits to a total combined audience in the tens of thousands in the past four years.

RMI also worked closely with the American Institute of Architects to develop Deep Energy Retrofits: An Emerging Opportunity, a guide for architects. The guide was launched during AIA’s annual conference in June in conjunction with a well-attended all-day seminar on deep energy retrofits. This industry intervention was donor-funded. RMI also teamed with the National Renewable Energy Laboratory to help produce a set of retrofit guides for different buildings categories (office, retail, healthcare, etc). Finally, RMI has shaped an educational agenda, one where we play specific roles to help all others understand the learning available, and the major holes still left to fill. Based on this agenda we have conducted half a dozen deep training sessions, focusing largely on a specific leverage point: engineering firms and ESCOs.

We’ve also testified to the U.S. House Subcommittee on Investigations and Oversight on the impact and importance of fossil-fuel reduction targets and green building rating systems, and written almost 100 blog posts and web articles on energy-efficient buildings and campuses. Deep retrofits are one area of innovation and promise in driving greater building efficiency in order to enable a fantastic, sometimes better-than-new building, and even more importantly, foster a vibrant clean energy economy. We cannot lay the path nor spread that message without donor funding. If you believe that efficiency and clean energy must be priorities globally, and that organizations like Rocky Mountain Institute are critical catalysts, please consider supporting our work or joining our team.


Part 2: RMI Scales Deep Retrofits Through Portfolios and Campuses


Since 2009, RMI’s work to advance deep energy retrofits has focused on a multi-pronged approach to scaling: 1) collaborate with project teammates, owners, and other fast movers who learn from and copy pioneering deep retrofit projects, 2) engage entire portfolios and campuses of buildings to impact more than scattered singular building retrofits, and 3) develop new, better, and more comprehensive ways of assessing risk and value associated with deep green buildings, to drive greater investment by financial decision makers.

Engaging portfolios and campuses and better assessing risk and value are both new and challenging topics, and our donor-funded work to advance them is by no means complete. But we believe we must aggressively accelerate the nature and quality of retrofits of all sorts in most commercial buildings—and it is imperative that we do so in order to rapidly drive down energy use and CO2 impact.

In today’s part two of a three-part series, we take a look at RMI’s work on portfolios and campuses. (Read parts one and three.)
Portfolios and Campuses

Deep energy retrofits are not for every building, and cannot be efficiently or economically done at random. Our portfolio and campus work—a significant thrust for four years now—has been revealing insights into this area and helping major players shape plans, standards, and processes. We have continually moved the bar higher on expectations for energy savings in a well-run portfolio or campus of buildings, especially when taken as a whole. Universities and corporate campuses are now leading the way toward zero carbon emissions—in fact, they can be re-envisioned as renewably powered microgrids.

Car Dealerships

Shortly after we wrapped up our work on the iconic Empire State Building, we began another influential—if less sexy—project focused on car dealerships. These are small buildings, not very valuable or appealing, metaphorical islands in seas of parked cars under powerful lights.

Working with Ford Motor Company and a big energy services company (ESCO), we selected three dealership facilities and executed our standard deep energy retrofit diagnosis and whole-system design effort. The resulting build-outs saved 60–80 percent of the energy with good economics. Despite three different geographies, RMI identified a common package of energy-saving measures focused on indoor and outdoor lighting, mechanical controls, commissioning, weatherization (plugging leaks), and when-it-fails HVAC equipment upgrades. This package saved the vast majority of the energy and could be scaled up—a lot.

There are currently more than 17,500 new-car dealers with total energy use exceeding 50 trillion BTU/year. Only a handful have been upgraded for energy efficiency. Many ESCOs and several financing players have discussed this opportunity with us, and some players have recently begun their own rollout of dealership retrofits complete with financing options, all taking advantage of relatively short paybacks available because of the heavy role lighting plays in the car sales business. The ball is rolling, though it could use a big push.

Malls, Retailers, and Supermarkets

Car dealerships represented a huge portfolio of reasonably similar buildings, but they comprised a portfolio with many (many!) owners. What about other large portfolios, but with fewer owners?

We realized that retailers and the mall owners that housed them presented another opportunity. The largest players in this arena had thousand of buildings, huge energy demands, and well-structured processes for setting standards and driving change. And, we had already worked with two big names: SuperValu, a northeastern supermarket chain, and WalMart, back when it was first beginning to consider what a more energy-efficient store might look like.

We quickly found and executed two more projects with large supermarket chains, Kroger and HEB, where tiny margins make energy savings a very, very big deal. In both cases we helped develop designs—now built and running well—for new test bed stores. These not only formed the new standard for all new stores, but, on a component basis, serve to pre-qualify equipment for retrofits or upgrades. Energy upgrades are one of the most profitable investments available to both store chains, and an RMI speech on the topic at the Food Marketing Institute in 2011 confirmed that these examples and their value are now well understood by the supermarket industry. Finding capital for projects remains a challenge, however.

A Focus on the Owner-Occupant

We then reached out to other retailers and major office building owner-occupants to look into more diverse (and less energy intensive) buildings portfolios. After discussions with many, The Exchange, which runs department stores, quick-service restaurants, and convenience stores on military bases, answered our call. So did Kaiser Permanente, one of the country’s largest and best-regarded health care organizations with a fleet of hundreds of office buildings and dozens of hospitals. As did telecommunications giant AT&T, which boasts a huge portfolio of more than 60,000 structures, courtesy of its Bell System heritage.

In all cases, our scope was research, planning, and limited testing focused on a central question: How to save the most energy from a large set of buildings, over time, with the most compelling economics?

RMI found that AT&T had huge opportunities requiring multiple strategies integrated carefully with workplace upgrades and equipment replacement cycles. Given corporate capital allocation requirements, it was also vital to bundle many projects together to leverage external, efficiency-focused capital to speed impact. At Kaiser, it became clear that efficiency provided a fantastic path toward meeting the company’s goals of a 30 percent absolute reduction in its carbon and energy footprints, but new governance, funding, and other mechanisms had to be created to capture it. Work at The Exchange, still underway, has revealed deep and broad savings opportunities, but economics, even in very similar buildings, vary widely. Project returns are best when linked with equipment upgrade cycles; much poorer when they are not.

These findings are among many that are universally applicable in larger owner-occupied portfolios, including almost all the large retailers like Target, Best Buy, Macy’s, and WalMart, as well as mall owners like Simon Property Group, with which we have built relationships over the last few years. These insights, and other practical advice, are integrated into RMI’s tools sets and frameworks on RetroFit Depot. It is clear that the impact potential in these large portfolios is huge but challenging to plan and capture.

Working with the Nation’s Largest Landlord

In 2010, RMI partnered with the largest and most influential office owner of them all: the U.S. General Services Administration (GSA). Long a real estate leader—and well recognized as such within the industry—the GSA’s 80-million-square-foot portfolio must become net zero by 2030 and three percent more efficient every year, according to Executive Order 13514.

The GSA does not have the capital to do this, however. So RMI has teamed with GSA leadership to define how performance contracting can be optimized, in order to drive broader and deeper retrofits. Rallied by a Deep RetroFit Challenge Summit in Boulder, Colorado, in 2011, energy service companies (ESCOs) have already roughly doubled the amount of savings (39 percent vs. 18 percent) they expect to deliver to GSA, though projects are not yet completed. We expect continued GSA leadership in expanding the potential of ESCOs.

State governments are another institution with significant building portfolios. In a still-evolving effort, we have advised government staff that are shaping, or practitioners serving, no fewer than six states planning or executing energy saving programs in state buildings. For instance, we contributed ideas and experiences to planners designing Governor Cuomo’s New York State program to improve energy efficiency in state buildings 20 percent by 2020. Meanwhile, the contractor supporting Missouri’s highly effective two percent (additional) savings per year program approached RMI to consider how to learn from and expand the Missouri program to other states.

After the 2011 release of Reinventing Fire, our book highlighting the longer-term fossil-fuel-free potential of the U.S. economy, it became clear that “what to do Monday” was a key question, so we executed the first (we hope) of a number of smaller “Reinventing Fires.” This first one was with the state of Connecticut. Connecticut’s leading state building efficiency program became a key part of the resulting 2013 comprehensive energy strategy focusing on efficiency, natural gas, and renewables.

University Campuses

RMI has a long history of studying universities as many are perfect test beds, and properly led, are capable of moving quickly. They have high diversity of buildings, but half or more of the energy use is often centered in three key areas: labs and hospitals, dining facilities, and data centers. All three are areas where RMI has done design work for new facilities, thus providing insights relevant to retrofits.

Some of our early work with campuses set the scene. Our Accelerating Campus Climate Initiative study and book with the Association for the Advancement of Sustainability in Higher Education (AASHE) dug into the challenges and opportunities of setting aggressive climate strategies, and gave us significant insight into the complexities of university campus decision making.

At Penn State, we learned of the vast gulf often present between facilities, research, and teaching in larger universities. At the University of British Columbia, we discovered potential solutions to bridging those gulfs, using very clear and active governance mechanisms. With Appalachian State and the University of North Carolina system, we have learned about the huge differences in campuses within large public university systems, and the benefits from shared learning like the annual UNC Energy Summits we co-host. At the University of Southern California we have learned that with patience, the sources of value and drivers of change can be found even for universities where sustainability and climate are not shaping important agendas. And our long-time links to our local university, the University of Colorado at Boulder, helped us realize that there was a timing opportunity. Many of the key academic buildings in this country were built during a boom time—part of the reaction to Sputnik—in the 1960s and 70s, and now constitute one of the “ripest” sets of buildings for retrofit anywhere.

These all have led to our current, capstone university project: a partnership with Arizona State University and Ameresco to develop an explicit roadmap to deliver a net-zero carbon university by 2025, one of the most aggressive climate commitments from any major university. Initial details of the program were released in October, but results will not be made public until summer 2014 when ASU, Ameresco, and RMI finalize the university’s climate neutrality implementation plan.

RMI has very high hopes and has made initial plans on how to rapidly spread insights from ASU and other leading universities because of a simple fact: universities are not only great test beds; they also shape and execute research. And the research opportunities in the areas of efficiency and renewables are tremendous, as we have found when serving as reviewers for government research grants and as judges for commercial real estate management company CBRE’s recent million-dollar research grant program. Finally, and perhaps most importantly, universities shape the knowledge, attitudes, and careers of their boards, alumni, leaders, students, and staff. They in turn shape the cities and regions in which they live and work. Universities are one of the most powerful leverage points we have in driving energy transformation, and we are launching programs to do just that.


Part 3: RMI Scales Deep Retrofits Through Deep Retrofit Value


Since 2009, RMI’s work to advance deep energy retrofits has focused on a multi-pronged approach to scaling: 1) collaborate with project teammates, owners, and other fast movers who learn from and copy pioneering deep retrofit projects, 2) engage entire portfolios and campuses of buildings to impact more than scattered singular building retrofits, and 3) develop new, better, and more comprehensive ways of assessing risk and value associated with deep green buildings, to drive greater investment by financial decision makers.

Engaging portfolios and campuses and better assessing risk and value are both new and challenging topics, and our donor-funded work to advance them is by no means complete. But we believe we must aggressively accelerate the nature and quality of retrofits of all sorts in most commercial buildings—and it is imperative that we do so in order to rapidly drive down energy use and CO2 impact.

In today’s part three of a three-part series, we take a look at RMI’s work on risk, value, and decision making. (Read parts one and two.)

Risk, Value, and Decision Making

In our earliest work on the Empire State Building and car dealerships, much of the key analysis and decision-making about whether and how to execute was financial. In those efforts, we used relatively simple life-cycle costing models, and since few good ones were available, we built better ones and made them available for all on our website.

But we also realized that life-cycle costing was the tip of the iceberg. If the goal was to dramatically improve the economics of retrofitting existing buildings and driving far more capital into the attractive opportunities that resulted, we had to do a lot more. Reviewing all the levers for improving retrofit economics, it became clear that RMI could add the most significant value in reducing the risk and cost of executing the complex design and build process of a retrofit. With that we set to work.


The Role of Building Energy Modeling

The first step was to develop and host the first-ever workshop for all the leaders of the U.S. building energy modeling (BEM) community. Called the BEM Innovation Summit, this two-day workshop sought ways to capitalize on the biggest opportunities for building energy modeling to support widespread solutions for achieving low-energy buildings. RMI has been involved in advancing how energy modelers can help improve confidence in efficiency investments. Most recently, RMI teamed with two research facilities to demonstrate methods for quantifying uncertainties, and thus risks, of modeled performance estimates.

RMI is also addressing owners’ needs to understand risk, which allows them to manage it. For instance, through DOE-funded work, RMI authored Building Energy Modeling for Owners and Managers, a guide to specifying and securing services. Equally important, these efforts have made RMI a go-to source for key thinking about risk reduction and access to less-expensive capital. In the end, our work on finance is about risk reduction and value increase to enable far more money to flow into making buildings better and more efficient; to “making older buildings even better than new ones.”

With 80 billion square feet of existing commercial buildings, and an ongoing new-build market equaling the best one to two percent of that, this is essential and must happen on a massive scale. We are determined to overcome the nontechnical barriers with the same drive as the technical ones.

Overcoming Split Incentives

Encouraged by a donor who had his own real estate portfolio, RMI teamed up with the influential Building Owners and Managers Association International (BOMA) to develop a practical new report, Working Together for Sustainability: The RMI-BOMA Guide for Landlords and Tenants. The report detailed the conclusions of a workshop on how to overcome the classic split incentive issue, which inhibits owners from making efficiency improvements that a tenant benefits from but will not pay for, and vice versa. Owners, landlords, tenants, and brokers all contributed and detailed ways to work together to overcome this hurdle. The free report has been aggressively and broadly distributed by BOMA and other channels (BOMA is a 100-year-old organization with 114 active branches in the U.S. and Canada) and RMI continues to work with BOMA to get new messages and ideas out today.

Small But Important: Retrofits in Smaller Commercial Buildings

Encouraged by BOMA, and cohosted with the Northwest Energy Efficiency Alliance (NEEA), RMI in 2011 also took a first look into the challenges of planning and financing retrofits in smaller commercial buildings, those under 50,000 square feet. This represents the vast majority (90 percent) of all commercial buildings and more than 50 percent of the space in the country. These buildings are considered too small to study extensively, with owners or managers too busy to navigate the complexity of any but the most urgent retrofit projects, much less the challenges of utility rebate and government tax credit paperwork.

The workshop found that 75 percent of these buildings are zombies whose owners cannot afford or have no interest in investing in their upkeep, even though rents, comfort, and longevity would all go up if they did. This is a massive opportunity for cities and local utilities to encourage, and local entrepreneurs to serve, ideally with turnkey solutions. The results have been leveraged in RMI’s community and electricity work and Reinventing Fire projects ever since.

Identifying Comprehensive Deep Retrofit Value

The small buildings Retrofit finance work also provided the final stimulus to look not just at risk and its links to financing, but more broadly at value. Good, deep green buildings such as those resulting from a deep retrofit are more comfortable, productive, marketable, attractive to recruits, supportive of corporate sustainability-linked brands, and many other great things. Many such values are hard to quantify. But since the real estate industry has very well established techniques for handling other hard to quantify but still vital factors—such as location, or marble lobbies, or fast elevators—why not get these value drivers into the decisions? Everyone would be better served if we did: owners, brokers, tenants, and the planet.

Scott Muldavin, who literally wrote the book on this topic, joined RMI in 2011 to help us and now serves as an advisor and collaborator. Our RetroFit Value Model, in a first version aimed at owner-occupants (half of the market), is due out in January 2014. Thoroughly reviewed and very well received by those in the field of sustainability and real estate finance, it lays out the logic, research, insight, and clear methodologies for capturing all the value components of a highly efficient building, to enable better and wiser deals to be made. RMI is of course using the framework in its own real estate planning. And we plan to share the work broadly with the help of friends like Urban Land Institute, BOMA, CoreNet Global, and many others. We also hope to find support to expand this approach to investors and brokers and specialty markets like universities and the GSA, where the tools will need some adjustment.

We are by no means done with the process of driving more capital, more portfolio strategy, and more aggressive campus goals and progress into the U.S. energy system. The stakes are huge and the timing is critical. Without strong savings in buildings, U.S. electricity and gas use will continue to grow, and new, long-lasting but regrettable investments in fossil-fueled electricity and natural gas distribution systems will be made. Those would be investments we do not need, because less money can bring permanent savings via efficiency, with no inflation or risk. Such fossil-fuel investments would likewise be ones the planet cannot afford, because the unnecessary electric plant WOULD of course be used, to the detriment of all who could have been richer, more comfortable, and more productive without it.