energy storage

Siemens Gamesa Pursues Hybrid Wind and Solar Projects With Energy Storage

The company confirms hybrid systems are a growing focus area.

By Jason Deign
View the original article here.

Siemens Gamesa Pursues Hybrid Wind and Solar Projects With Energy Storage

Siemens Gamesa Pursues Hybrid Wind and Solar Projects With Energy Storage

Siemens Gamesa, the leading turbine manufacturer, is looking to go beyond wind — into hybrid systems with solar and storage.

The company’s chief technology officer, Antonio de la Torre Quiralte, told GTM that Siemens Gamesa remains committed to the wind market. However, it is increasingly interested in other technologies to reduce renewable energy intermittency.

“Following the merger about one year ago, we realized that our two former companies were quite interested in resolving the renewable problem, which is discontinuity,” he said.

“As part of our business strategy, there is a clear mandate from our CEO and our board that we will resolve, with a huge investment in new technologies, solutions for the market that will allow, quite soon, stable renewable procurement of energy.”

The development of systems that can provide baseload or near-baseload capacity could involve the hybridization of potentially complementary generation technologies such as wind and solar. But storage is a big part of the equation.

“It definitely is in our roadmap,” de la Torre said.

De la Torre said the manufacturer is focused on solutions rather than products, integrating energy storage with renewable plants at the project level.

He also said Siemens Gamesa is looking beyond today’s existing utility-scale battery storage capacities, which typically run to tens of megawatt hours, to gigawatt-hour levels of storage.

Batteries will remain the company’s technology of choice for standalone hybrid and off-grid systems, which demand storage capacities of between 500 kilowatt-hours and 50 megawatt-hours for onshore wind and PV plant balancing.

But Siemens Gamesa is also investigating a thermal storage system called the Future Energy Solution, which could boast much higher capacities. A demonstration plant currently under construction in Hamburg will be able to deliver 1.5 megawatts of power for 24 hours.

Siemens Gamesa hopes to use this kind of technology for round-the-clock renewable energy generation. “We have to integrate several renewable sources,” said de la Torre. “Currently we are investigating all relevant sorts of storage.”

Recently, for example, Siemens Gamesa started testing a 120-kilowatt, 400-kilowatt-hour redox flow battery at its La Plana test center near Zaragoza in Spain.

The test center had previously been used by Gamesa to put together a hybrid system combining traditional gensets with wind, solar and storage in 2016. Customer interest in hybrid systems with storage has grown in the last six to nine months, de la Torre said.

One example is the Bulgana Green Power Hub project owned by Neoen in Australia, where Siemens Gamesa will be acting as an engineering, procurement and construction contractor, and will be integrating a 194-megawatt wind farm with 34 megawatt-hours of Tesla storage.

Hong Zhang Durandal, a business analyst with MAKE Consulting, said Siemens Gamesa’s growing interest in hybrid systems reflects a wider trend within the wind industry. OEMs are not interested in having storage as a product, he said, but see value in adding other technologies to wind farms, for example to help avoid curtailment or smooth out imbalances.

It also makes sense for Siemens Gamesa to explore thermal or redox flow technologies for bulk, long-duration storage, he said. “For lithium-ion, getting to gigawatt-hours is just cost-ineffective,” he said. “It’s too large a system to justify the cost of the batteries.”

In a recent question-and-answer session published by Wood Mackenzie, Durandal said wind-plus-storage could offer new opportunities for energy production in the U.S.

“Wind farms paired with energy storage can shift energy from periods of low prices to take advantage of spikes and shift energy in bulk when it is most needed,” he said.

Pairing wind with energy storage also helps with ramp-rate control, can avoid curtailment and could open the door for project owners to compete for ancillary services revenues.

“We are seeing increased interest by wind turbine OEMs across the globe in exploring and developing utility-scale wind-plus-storage systems,” Durandal said. “Not only can the development of such systems strengthen the portfolio of the OEMs in key markets, [but] hybrid systems can also play a significant role in the deployment of more wind energy in the future.”

The World’s Biggest Solar Project Comes With a ‘Batteries Included’ Sticker

By Brian Eckhouse and Mark Chediak
View the original article here.

The world’s biggest-ever solar project — a $200 billion venture in Saudi Arabia — comes with a “batteries included” sticker that signals a major shift for the industry.

SoftBank Group Corp. partnered with the oil-rich Saudis this week to plan massive networks of photovoltaic panels across the sun-drenched desert kingdom. The project is 100 times larger than any other proposed in the world, and features plans to store electricity for use when then sun isn’t shining with the biggest utility-scale battery ever made.

The daytime-only nature of solar power has limited its growth globally partly because the cost of batteries was so high. Utilities that get electricity from big solar farms still rely on natural gas-fired backup generators to keep the lights on around the clock. But surging battery supplies to feed electric-car demand have sent prices plunging, and solar developers from California to China are adding storage to projects like never before.

Cheaper Batteries

Costs are expected to drop in half by 2025 as factories ramp up battery production

“The future is pretty much hybrid facilities,’’ said Martin Hermann, the CEO of 8minutenergy Renewables LLC, a U.S. company that’s expecting to include batteries in the vast majority of the 7.5 gigawatts of solar projects it’s developing.

Affordable batteries have long been the Holy Grail for solar developers. Without them, some of the best U.S. solar markets, like California, have too much of electricity available at midday and not enough around dusk when demand tends to peak.

Wind Wins

While the solar industry has grown, it still accounts for less than 2 percent of U.S. electricity supply and has been outpaced by investments in other green technologies. Wind farms are set to overtake hydroelectric plants next year as the biggest source of renewable energy in the U.S., accounting for more than 6 percent of the nation’s electricity generating capacity, government data show.

Now, the economics of storage is shifting. The price of lithium-ion battery packs tumbled 24 percent last year, according to Bloomberg New Energy Finance, and the U.S. is allowing solar-dedicated storage to qualify for a federal tax credit. More utilities and local energy providers are mandating that new solar farms include batteries to store power.

Adding batteries to solar plants could revolutionize the industry. California has contemplated going all-renewable by 2045. It won’t be able to do that without storage, said Kevin Smith, chief executive officer of SolarReserve LLC, a solar project developer that uses molten-salt energy-storage technology.

More Control

“Storage just adds control,” said Logan Goldie-Scot, a San Francisco-based energy storage analyst at BNEF. “In a number of markets, you are seeing customers seeking a greater deal of control.”

By the end of 2018, it’s possible that U.S. utilities may be asking for batteries on every solar project proposed, said Ravi Manghani, an energy analyst at GTM Research. That would mean the country is about to embark on a major battery boom. Only about 1 gigawatt of storage had been installed in the U.S. through the third quarter, according to BNEF.

Several large developers already are proposing storage units as part of their projects, including NextEra Energy Inc.

Cypress Creek Renewables LLC, which builds clean-power plants, is contemplating batteries at every one of its early-stage solar projects, according to Chief Executive Officer Matthew McGovern. The company installed batteries at 12 solar farms last year.

The shift isn’t just in the U.S.

The Saudi-SoftBank project calls for an astonishing 200 gigawatts of generating capacity that would be built over the next decade or so, with the first electricity being produced by the middle of next year. Based on BNEF data, the project would dwarf the total solar panels that the entire photovoltaic industry supplied worldwide last year.

Evening Hours

A key feature of the project will be the construction of “the largest utility-scale battery” in two to three years that will supply “evening hour” power to consumers, Masayoshi Son, SoftBank’s founder, told reporters in New York this week.

Tesla Inc., the Palo Alto, California-based carmaker that’s building batteries with Panasonic at a giant factory in Nevada, will supply the storage units for a solar project in the Australian state of Victoria. Houston-based Sunnova Energy Corp. is selling solar and battery systems in Puerto Rico, where Hurricane Maria devastated the island’s power grid in September and tens of thousands of people still don’t have electricity.

China-based Trina Solar Ltd., once the world’s largest maker of photovoltaic panels, is seeking to invest 3.5 billion yuan ($556 million) in integrated energy projects this year that could include power generation, distribution grids and storage, Vice President Liu Haipen said Wednesday in an interview in Beijing. Most of the investment will be in China, but the company is exploring opportunities in Germany, Spain, Australia and Japan, he said.

Cheaper batteries are even providing a boost in the residential market for solar systems.

“It’s a game-changer,” said Ed Fenster, executive chairman of San Francisco-based Sunrun Inc., the largest U.S. installer of residential solar systems. “The demand that we’re seeing is outstripping our expectations.”

— With assistance by Stephen Cunningham, Vivian Nereim, and Feifei Shen

How Energy Storage Can Limit the Impact of Extreme Weather

John Jung, President & CEO, Greensmith Energy
View the original article here.

energy storage weather

Photo Credit: Howard Scott

Last month, the National Hurricane Center reported that Hurricane Maria, the sixth fastest hurricane on record, caused an estimated $90 billion in damage in Puerto Rico and the U.S. Virgin Islands. This would make it the third costliest hurricane in history, following Katrina and Harvey.

Now seven months later, there are still parts of Puerto Rico that are still without power. I can only imagine how this prolonged outage is making relief and recovery efforts difficult.

For those of us in the energy business, we see a better pathway for communities to avoid prolonged outages that hinder relief and recovery efforts.

One solution – already in the marketplace and in use around the world – is the combination of energy storage and islanded grid systems.

Islanded systems, also known as microgrids, can operate with or without a connection to grid. When you add energy storage, communities benefit from a more flexible, versatile distributed energy resource.

What exactly does that mean?

Traditional grid operators, without adequate energy storage, follow conservative limits on the deployment of distributed energy resources to maintain reliability.

Energy storage enables integration of more renewable energy sources so that grid systems can better respond to dynamic fluctuations in electricity consumption, and lessen greenhouse gas emissions. As solar, wind and hydro become the world’s main energy sources, renewables are no longer an incremental component in energy production.

And, renewable energy costs are the lowest ever. So, with islanding and storage combined, microgrids can safely lift limits on renewables, bringing a substantial benefit in places where electricity prices exceed the cost of electricity for renewables.

The Graciosa Hybrid Renewable Power Plant, located on the island of Graciosa in the northern part of the Azores, an autonomous region of Portugal, is a recent example of a Greensmith microgrid project that will combine solar and wind generation, together with energy storage using lithium-ion batteries. When completed, the Graciosa plant will enable 1 MW of solar and 4.5 MW of wind power to be supplied to the grid, reducing the region’s reliance on imported fossil fuels and significantly reducing GHG emissions.

Credit: Howard Scott

Credit: Howard Scott

Beyond the advanced energy storage technology Greensmith is known for, we help a growing number of power companies and developers integrate and maximize a diverse mix of grid resources using our industry-leading GEMS software platform. Our suite of proven grid-scale and microgrid energy storage solutions delivers renewables integration, reliability and resilience. In fact, more than one-third of all energy storage capacity installed in the United States is running on Greensmith’s GEMS software platform, which provides full visibility into a grid system operation and can pinpoint and isolate any malfunctions.

Faster response time means a greater chance of avoiding power outages. And, as we have seen in Puerto Rico, and the bomb cyclones that hit the northeast in March, extreme weather events were happening much more frequently across the country and the world.

The frequency of natural disasters is an important reason that more of us should look at energy storage and microgrids as a necessary infrastructure improvement for customers and utilities.

It’s clear that, while microgrids are complex systems, when deployed with energy storage solutions, they are essential to the evolution of our power grid.

EMERALD SKYLINE TO DEVELOP SOLAR FARM IN SOUTHERN ARIZONA WITH RESEARCH AND DEVELOPMENT FACILITY TO PURSUE ELECTRICAL STORAGE TECHNOLOGY.

“Solar generation and electricity storage technology are rapidly evolving sustainable energy alternatives. The combination of solar power generation and electricity storage is being utilized in projects around the world”

 May 1, 2018 from Emerald Skyline Corporation

BOCA RATON, FL, May 1, 2018 – FOR IMMEDIATE RELEASE

Today, Emerald Skyline announced that it will develop land located in southern Arizona for the purpose of solar generation and electricity storage technology research. The project, Emerald City Solar, recognizes that both solar generation and electricity storage technologies are rapidly evolving and will continue to become more cost effective. The southern Arizona project will include research and development facilities to continue to evaluate new technologies as they emerge. It is expected that the total generation of the solar farm will continue to increase along with the value per kilowatt hour of the electricity generated as new technologies are deployed. Emerald Skyline believes the future of renewable energy is in the storage technology and will be exploring novel ways of delivering and storing energy. They have assembled a world-class team to conduct research and development to drive innovation and advanced sustainable technologies to manage surplus renewable power for use on demand and supply of power.

SOLAR FARM

The site of the solar farm development enjoys the best solar profile in the United States and is near major urban centers including San Diego, Los Angeles, and Phoenix. The electricity generated could be sold to the local electric power utility company at prevailing Power Purchase Agreement rates of about .07 per kilowatt hour (KwH). However, through the use of proven electric storage technology, the value of the electricity could be significantly increased through the selling into the power grid during peak demand periods at much higher spot market prices. Selling power in this manner is called Regulation Services.

ELECTRICITY STORAGE

Deployment of electricity storage is increasing at explosive rates and has been described by the Edison Electric Institute (EEI) as a game changer in the industry. Several new companies can provide large battery-based storage units and have the operating systems required to interact with the electricity grid. Through storing electricity and injecting the stored power into the grid during peak demand periods the cost of peaking power can be greatly reduced. By selling power into the grid during peak demand at much higher prices the value of the solar power farm can be greatly enhanced.

“As a sustainability and resiliency consulting and LEED project management firm, this partnership enables us to collaborate with a host of industry partners to not only produce energy but also to test and demonstrate the benefits of solar energy storage technologies. When electricity storage is not available, excess solar electricity is wasted. When storage is installed, the excess energy can be saved and subsequently used to reduce the use of a fossil fuel,” reports Abraham Wien, LEED AP O+M, Director of Architecture & Environmental Design for Emerald Skyline.

To find out more information about Emerald City Solar or electricity generated from renewable sources such as solar and the current development in electrical energy storage technologies for a greener tomorrow, please contact Abraham Wien at aw@emeraldskyline.com or call us 305.424.8704.