solar power

Solar farms in space could be renewable energy’s next frontier

space-based-solar-array-concept

Space-based solar power is seen as a uniquely reliable source of renewable energy. NASA / Artemis Innovation Management Solutions LLC

China wants to put a solar power station in orbit by 2050 and is building a test facility to find the best way to send power to the ground.

By Denise Chow and Alyssa Newcomb
View the original article here.

As the green enery revolution accelerates, solar farms have become a familiar sight across the nation and around the world. But China is taking solar power to a whole new level. The nation has announced plans to put a solar power station in orbit by 2050, a feat that would make it the first nation to harness the sun’s energy in space and beam it to Earth.

Since the sun always shines in space, space-based solar power is seen as a uniquely reliable source of renewable energy.

“You don’t have to deal with the day and night cycle, and you don’t have to deal with clouds or seasons, so you end up having eight to nine times more power available to you,” said Ali Hajimiri, a professor of electrical engineering at the California Institute of Technology and director of the university’s Space Solar Power Project.

Of course, developing the hardware needed to capture and transmit the solar power, and launching the system into space, will be difficult and costly. But China is moving forward: The nation is building a test facility in the southwestern city of Chongqing to determine the best way to transmit solar power from orbit to the ground, the China Daily reported.

REVISITING AN OLD IDEA

The idea of using space-based solar power as a reliable source of renewable energy isn’t new. It emerged in the 1970s, but research stalled largely because the technological demands were

thought to be too complex. But with advances in wireless transmission and improvements in the design and efficiency of photovoltaic cells, that seems to be changing.

“We’re seeing a bit of a resurgence now, and it’s probably because the ability to make this happen is there, thanks to new technologies,” said John Mankins, a physicist who spearheaded NASA efforts in the field in the 1990s before the space agency abandoned the research.

Population growth may be another factor driving the renewed interest in space-based solar power, according to Mankins. With the world population expected to swell to 9 billion by 2050, experts say it could become a key way to meet global energy demands — particularly in Japan, northern Europe and other parts of the world that aren’t especially sunny.

“If you look at the next 50 years, the demand for energy is stupendous,” he said. “If you can harvest sunlight up where the sun is always shining and deliver it with essentially no interruptions to Earth — and you can do all that at an affordable price — you win.”

MAKING IT A REALITY

Details of China’s plans have not been made public, but Mankins says one way to harness solar power in space would be to launch tens of thousands of “solar satellites” that would link up to form an enormous cone-shaped structure that orbits about 22,000 miles above Earth.

The swarming satellites would be covered with the photovoltaic panels needed to convert sunlight into electricity, which would be converted into microwaves and beamed wirelessly to

ground-based receivers — giant wire nets measuring up to four miles across. These could be installed over lakes or across deserts or farmland.

Mankins estimates that such a solar facility could generate a steady flow of 2,000 gigawatts of power. The largest terrestrial solar farms generate only about 1.8 gigawatts.

If that sounds promising, experts caution that there are still plenty of hurdles that must be overcome — including finding a way to reduce the weight of the solar panels.

“State-of-the-art photovoltaics are now maybe 30 percent efficient,” said Terry Gdoutos, a Caltech scientist who works with Hajimiri on the space-based solar research “The biggest challenge is bringing the mass down without sacrificing efficiency.”

For its part, the Caltech team recently built a pair of ultralight photovoltaic tile prototypes and showed that they can collect and wirelessly transmit 10 gigahertz of power. Gdoutos said the prototypes successfully performed all the functions that real solar satellites would need to do in space, and that he and his colleagues are now exploring ways to further reduce the weight of the tiles.

THE ROAD AHEAD

China hasn’t revealed how much it’s spending to develop its solar power stations. Mankins said that even a small-scale test to demonstrate the various technologies would likely cost at least $150 million, adding that the swarming solar satellites he envisions would cost about $10 billion apiece.

Despite its exorbitant price tag, Mankins remains a staunch advocate of space-based solar power.

“Ground-based solar is a wonderful thing, and we’ll always have ground-based solar,” he said. “For a lot of locations, rooftop solar is fabulous, but a lot of the world is not like Arizona. Millions of people live where large, ground-based solar arrays are not economical.”

Mankins hailed recent developments in the field and said he is keen to follow China’s new initiative. “The interest from China has been really striking,” he said. “Fifteen years ago, they were completely nonexistent in this community. Now, they are taking a strong leadership position.”

The Price of Large-Scale Solar Keeps Dropping

JOHN ROGERS, SENIOR ENERGY ANALYST, CLEAN ENERGY | SEPTEMBER 13, 2018, 11:49 AM EST
View the original article here.

PV modules at the Kerman site near Fresno, California
The latest annual report on large-scale solar in the U.S. shows that prices continue to drop. Solar keeps becoming more irresistible.

The report, from Lawrence Berkeley National Laboratory (LBNL) and the US Department of Energy’s Solar Energy Technologies Office, is the sixth annual release about the progress of “utility-scale” solar. For these purposes, they generally define “utility-scale” as at least 5 megawatts (three orders of magnitude larger than a typical residential rooftop solar system). And “solar” means mostly photovoltaic (PV), not concentrating solar power (CSP), since PV is where most of the action is these days.

Here’s what the spread of large-scale solar looks like:

Solar Drop 2

In all, 33 states had solar in the 5-MW-and-up range in 2017—four more than had it at the end of 2016. [For a cool look at how that map has changed over time, 2010 to 2017, check out this LBNL graphic on PV additions.]

Watch for falling prices

Fueling—and being fueled by—that growth are the reductions in costs for large-scale projects. Here’s a look at power purchase agreements (PPAs), long-term agreements for selling/buying power from particular projects, over the last dozen years:

Solar Drop 3

And here’s a zoom-in on the last few years, broken out by region:

Solar Drop 4

While those graphs show single, “levelized” prices, PPAs are long-term agreements, and what happens over the terms of the agreements is worth considering. One of the great things about solar and other fuel-free electricity options is that developers can have a really good long-term perspective on future costs: no fuel = no fuel-induced cost variability. That means they can offer steady prices out as far as the customer eye can see.

And, says LBNL, solar developers have indeed done that:

Roughly two-thirds of the contracts in the PPA sample feature pricing that does not escalate in nominal dollars over the life of the contract—which means that pricing actually declines over time in real dollar terms.

Imagine that: cheaper over time. Trying that with a natural gas power plant would be a good way to end up on the losing side of the contract—or to never get the project financed in the first place.

Here’s what that fuel-free solar steadiness can get you over time, in real terms:

Solar Drop 5

What’s behind the PPA prices

So where might those PPA price trends be coming from? Here are some of the factors to consider:

Equipment costs. Solar equipment costs less than it used to—a lot less. PPAs are expressed in cost per unit of electricity (dollars per megawatt-hour, or MWh, say), but solar panels are sold based on cost per unit of capacity ($ per watt). And that particular measure for project prices as a whole also shows impressive progress. Prices dropped 15% just from 2016 to 2017, and were down 60% from 2010 levels.

Solar Drop 6

The federal investment tax credit (30%) is a factor in how cheap solar is, and has helped propel the incredible increases in scale that have helped bring down costs. But since that ITC has been in the picture over that whole period, it’s not directly a factor in the price drop.

Project economies of scale. Bigger projects should be cheaper, right? Surprisingly, LBNL’s analysis suggests that, even if projects are getting larger (which isn’t clear from the data), economies of scale aren’t a big factor, once you get above a certain size. Permitting and other challenges at the larger scale, they suggest, “may outweigh any benefits from economies of scale in terms of the effect on the PPA price.”

Solar resource. Having more of the solar happen in sunnier places would explain the price drop—more sun means more electrons per solar panel—but sunnier climes are not where large-scale solar’s growth has taken it. While a lot of the growth has been in California and the Southwest, LBNL says, “large-scale PV projects have been increasingly deployed in less-sunny areas as well.” In fact:

In 2017, for the first time in the history of the U.S. market, the rest of the country (outside of California and the Southwest) accounted for the lion’s share—70%—of all new utility-scale PV capacity additions.

The Southeast, though late to the solar party, has embraced it in a big way, and accounted for 40% of new large-scale solar in 2017. Texas solar was another 17%.

But Idaho and Oregon were also notable, and Michigan was one of the four new states (along with Mississippi, Missouri, and Oklahoma) in the large-scale solar club. (And, as a former resident of the great state of Michigan, I can attest that the skies aren’t always blue there—even if it actually has more solar power ability than you might think.)

Capacity factors. More sun isn’t the only way to get more electrons. Projects these days are increasingly likely to use solar trackers, which let the solar panels tilt face the sun directly over the course of the day; 80% of the new capacity in 2017 used tracking, says LBNL. Thanks to those trackers, capacity factors themselves have remained steady in recent years even with the growth in less-sunny locales.

What to watch for

This report looks at large-scale solar’s progress through the early part of 2018. But here are a few things to consider as we travel through the rest of 2018, and beyond:

  • The Trump solar tariffs, which could be expected to raise costs for solar developers, wouldn’t have kicked in in time to show up in this analysis (though anticipation of presidential action did stir things up even before the tariff hammer came down). Whether that signal will clearly show in later data will depend on how much solar product got into the U.S. ahead of the tariffs. Some changes in China’s solar policies are likely to depress panel prices, too.
  • The wholesale value of large-scale solar declines as more solar comes online in a given region (a lot of solar in the middle of the day means each MWh isn’t worth as much). That’s mostly an issue only in California at this point, but something to watch as other states get up to high levels of solar penetration.
  • The investment tax credit, because of a 2015 extension and some favorable IRS guidance, will be available to most projects that get installed by 2023 (even with a scheduled phase-down). Even then it’ll drop down to 10% for large-scale projects, not go away completely.
  • Then there’s energy storage. While the new report doesn’t focus on the solar+storage approach, that second graphic above handily points out the contracts that include batteries. And the authors note that adding batteries doesn’t knock things completely out of whack (“The incremental cost of storage does not seem prohibitive.”).

And, if my math is correct, having 33 states with large-scale solar leaves 17 without. So another thing to watch is who’s next, and where else growth will happen.

Many of the missing states are in the Great Plains, where the wind resource means customers have another fabulous renewable energy option to draw on. But solar makes a great complement to wind. And the wind-related tax credit is phasing out more quickly than the solar ITC, meaning the relative economics will shift in solar’s favor.

Meanwhile, play around with the visualizations connected with the new release (available at the bottom of the report’s landing page), on solar capacity, generation, prices, and more, and revel in solar’s progress.

Large-scale solar is an increasingly important piece of how we’re decarbonizing our economy, and the information in this new report is a solid testament to that piece of the clean energy revolution.

Warren Buffet’s MidAmerican Energy puts in Iowa’s latest big battery project

Grand Ridge, an existing Invenergy project that combines wind power and energy storage, in Illinois. Image: Invenergy.

Grand Ridge, an existing Invenergy project that combines wind power and energy storage, in Illinois. Image: Invenergy.

View the original article here.
The US state of Iowa got its first grid-scale solar-plus-storage system at the beginning of this year, and this has already been followed by the completion of another, larger battery project in the US state this week.

Energy-Storage.news reported last week on the completion of a solar PV system at Maharishi University of Management equipped not only with solar trackers but also with a 1.05MWh flow battery.

This week, project developer Invenergy said a four month “construction sprint” had been successfully undertaken and the company has begun commercial operations of a 1MW / 4MWh lithium iron phosphate battery energy storage system.

Located at a substation in Knoxville, Iowa, the project has been executed for utility MidAmerican Energy, one of billionaire investor Warren Buffet’s companies as a subsidiary of Berkshire Hathaway Energy. MidAmerican serves just under 800,000 electricity customers.

In a November press release, MidAmerican’s VP of resource development said the utility-scale storage system would teach lessons about “how best to use an energy storage system, and how it can serve our customers in the future,” adding that the primary purpose of the system will be to help manage peak loads on the utility’s network.

“Energy storage has the potential to allow us to retain energy when customer demand is low and release it during peak usage times. That would give us new options to manage peak loads, enhance overall reliability and help keep electric costs low and affordable for our customers,” Mike Fehr of MidAmerican Energy said.

The utility highlighted four of the main benefits of energy storage that it will explore through the application of the lithium system: flattening and managing peaks in electricity demand through storing off-peak energy for later use, reducing the required run times and capacities of natural gas peaker plants with energy storage, enhancing the value and usefulness of renewable energy through smoothing the output of solar farms before it enters the grid and improving power quality and extending the life of transformers and other grid infrastructure.

“Energy storage is still in the development stages and the economic feasibility on a larger scale is being assessed as well; however, prices are trending downward,” Mike Fehr said.

“MidAmerican Energy wants first-hand experience with the technology so we’re positioned to quickly and efficiently add it to our system in ways that benefit our customers when the price is right.”

For Invenergy, which already owns and operates four other large-scale battery systems it developed, this has been its first project as an EPC (engineering, procurement and construction) partner.

“We are excited by the new opportunities for battery storage that we are seeing around the country. We are grateful for partners like MidAmerican Energy who are seeking innovative ways to deliver value to their customers and are proud to have provided them with this solution in such a short time,” Invenergy senior VP Kris Zadlo said.

The World’s Biggest Solar Project Comes With a ‘Batteries Included’ Sticker

By Brian Eckhouse and Mark Chediak
View the original article here.

The world’s biggest-ever solar project — a $200 billion venture in Saudi Arabia — comes with a “batteries included” sticker that signals a major shift for the industry.

SoftBank Group Corp. partnered with the oil-rich Saudis this week to plan massive networks of photovoltaic panels across the sun-drenched desert kingdom. The project is 100 times larger than any other proposed in the world, and features plans to store electricity for use when then sun isn’t shining with the biggest utility-scale battery ever made.

The daytime-only nature of solar power has limited its growth globally partly because the cost of batteries was so high. Utilities that get electricity from big solar farms still rely on natural gas-fired backup generators to keep the lights on around the clock. But surging battery supplies to feed electric-car demand have sent prices plunging, and solar developers from California to China are adding storage to projects like never before.

Cheaper Batteries

Costs are expected to drop in half by 2025 as factories ramp up battery production

“The future is pretty much hybrid facilities,’’ said Martin Hermann, the CEO of 8minutenergy Renewables LLC, a U.S. company that’s expecting to include batteries in the vast majority of the 7.5 gigawatts of solar projects it’s developing.

Affordable batteries have long been the Holy Grail for solar developers. Without them, some of the best U.S. solar markets, like California, have too much of electricity available at midday and not enough around dusk when demand tends to peak.

Wind Wins

While the solar industry has grown, it still accounts for less than 2 percent of U.S. electricity supply and has been outpaced by investments in other green technologies. Wind farms are set to overtake hydroelectric plants next year as the biggest source of renewable energy in the U.S., accounting for more than 6 percent of the nation’s electricity generating capacity, government data show.

Now, the economics of storage is shifting. The price of lithium-ion battery packs tumbled 24 percent last year, according to Bloomberg New Energy Finance, and the U.S. is allowing solar-dedicated storage to qualify for a federal tax credit. More utilities and local energy providers are mandating that new solar farms include batteries to store power.

Adding batteries to solar plants could revolutionize the industry. California has contemplated going all-renewable by 2045. It won’t be able to do that without storage, said Kevin Smith, chief executive officer of SolarReserve LLC, a solar project developer that uses molten-salt energy-storage technology.

More Control

“Storage just adds control,” said Logan Goldie-Scot, a San Francisco-based energy storage analyst at BNEF. “In a number of markets, you are seeing customers seeking a greater deal of control.”

By the end of 2018, it’s possible that U.S. utilities may be asking for batteries on every solar project proposed, said Ravi Manghani, an energy analyst at GTM Research. That would mean the country is about to embark on a major battery boom. Only about 1 gigawatt of storage had been installed in the U.S. through the third quarter, according to BNEF.

Several large developers already are proposing storage units as part of their projects, including NextEra Energy Inc.

Cypress Creek Renewables LLC, which builds clean-power plants, is contemplating batteries at every one of its early-stage solar projects, according to Chief Executive Officer Matthew McGovern. The company installed batteries at 12 solar farms last year.

The shift isn’t just in the U.S.

The Saudi-SoftBank project calls for an astonishing 200 gigawatts of generating capacity that would be built over the next decade or so, with the first electricity being produced by the middle of next year. Based on BNEF data, the project would dwarf the total solar panels that the entire photovoltaic industry supplied worldwide last year.

Evening Hours

A key feature of the project will be the construction of “the largest utility-scale battery” in two to three years that will supply “evening hour” power to consumers, Masayoshi Son, SoftBank’s founder, told reporters in New York this week.

Tesla Inc., the Palo Alto, California-based carmaker that’s building batteries with Panasonic at a giant factory in Nevada, will supply the storage units for a solar project in the Australian state of Victoria. Houston-based Sunnova Energy Corp. is selling solar and battery systems in Puerto Rico, where Hurricane Maria devastated the island’s power grid in September and tens of thousands of people still don’t have electricity.

China-based Trina Solar Ltd., once the world’s largest maker of photovoltaic panels, is seeking to invest 3.5 billion yuan ($556 million) in integrated energy projects this year that could include power generation, distribution grids and storage, Vice President Liu Haipen said Wednesday in an interview in Beijing. Most of the investment will be in China, but the company is exploring opportunities in Germany, Spain, Australia and Japan, he said.

Cheaper batteries are even providing a boost in the residential market for solar systems.

“It’s a game-changer,” said Ed Fenster, executive chairman of San Francisco-based Sunrun Inc., the largest U.S. installer of residential solar systems. “The demand that we’re seeing is outstripping our expectations.”

— With assistance by Stephen Cunningham, Vivian Nereim, and Feifei Shen

Mapping the Boom in Global Solar Power

By Molly Lempriere
View the original article here.

Solar power is growing faster than any other renewable energy in the world, according to new research by the IEA. But where in the world is the technology booming the most?

Solar is growing at speed in several states, including Utah, Arizona, and Nevada, and looks set to continue this trend through this year and beyond.

Solar is growing at speed in several states, including Utah, Arizona, and Nevada, and looks set to continue this trend through this year and beyond.

Vote YES on Amendment 4 in August to Lower the Cost of Energy for Floridians

Solar Power: the Sunshine State Needs Your Help

JulieBy Julie Lundin, LEED-AP, Principal, Emerald Skyline Corporation

Vote Yes Amendment 4In April 2015, I wrote an article for our newsletter entitled “How you can help make Florida the Sunshine State again.” At the time, Floridians for Solar Choice, a coalition of solar advocates was seeking signatures on a ballot petition to expand solar power in the State of Florida. I volunteered and participated in obtaining these important signatures. The petition’s focus was to increase solar choice by allowing customers the option to power their homes or businesses with solar power and choose who provides it to them.

To get the initiative on the ballot, Florida required the coalition to first collect over 68,000 signatures of registered voters, and then have the initiative language approved by the state Supreme Court. This amendment failed to get on the November 2016 ballot due to being stymied when the utilities conducted a price war over petition gathering and they ended up in federal court suing their petition gathering vendor over billing practices. This proposal is now intended for the 2018 ballot. If passed, it will allow property owners to sign lease agreements with solar companies to finance and install equipment, a financing vehicle available in most states. Solar owners would then be allowed to generate and sell solar electricity to contiguous property owners as well as to area utilities.

Currently, there are two solar power amendments that will be part of our Florida elections this fall. Even as a person involved in sustainable building and design as well as a solar power supporter, I was unclear about the content and ramifications of Amendment 4 and Amendment 1. My hope is that this article will help clarify the amendments and lead to informed voter choices.

Amendment 4 will be on the August 30th Florida 2016 Primary Election Ballot. It is officially titled “Solar Devices or Renewable Energy Source Devices; Exemption from Certain Taxation and Assessment.” Explanation: If you were to install solar panels on your property, the value would be exempt from both the tangible personal property tax and the real property tax.

  • It also creates a new exemption for businesses, appraisers would exempt the renewable- energy from the ad-valorem tax levied on the tangible personal property of a business. Amendment 4 was put on the ballot by the Legislature, with unanimous votes in both the Florida Houseof Representatives and the Senate.

Amendment 1 also known as “The Florida Solar Energy Subsidies and Personal Solar Use Initiative” will be on the November 8, 2016 Election Ballot as an initiated constitutional amendment. According to BallotPedia, for a constitutional amendment to be enacted in Florida, it must win a supermajority vote of 60 percent of those voting on the questions. Amendment 1 was created by an organization with a grassroots sounding name, Consumers for Smart Solar. In reality the organization is financed by the state’s major electric utility companies. This measure qualified for the ballot in late January after getting nearly 700,000 signatures from Floridians. The competing measure that I referenced above, Floridians for Solar Choice, a group backed by the solar industry, did not get enough signatures and was derailed by the petition gathering price war. For in depth information on Amendment 1, read the following article titled “Are Big Power Companies Pulling a Fast One on Florida Voters?”

http://www.motherjones.com/environment/2016/03/florida-solar-amendment-utility-companies-electricity 

Solar Panel Installation
The following is an editorial by the Miami Herald Editorial Board printed on August 9, 2016. This editorial will help to understand the history and issues of solar power in the State of Florida and perhaps provide clarity for your vote.

http://www.miamiherald.com/opinion/editorials/article94707982.html

Amendment 4: Vote Yes on this beneficial solar proposal on Aug. 30

This is the Sunshine State. However, the use of solar energy — dependent on sunlight, which we have in abundance, and not on nuclear or fossil fuel — is still sporadic and contentiously debated.

Cost and who profits almost always play central roles. But unlike the controversial solar consumer-rights amendment on November’s ballot, in the primary on Aug. 30, Florida’s voters can approve an almost universally supported constitutional amendment that will reduce the cost of installing solar panels — more incentivizing, less punitive.

The biggest barrier to solar panels is the upfront cost. Even though the cost of solar-panel installation has been dropping, it still is an expensive endeavor for many property owners. Amendment 4 would provide a tax exemption that makes it less costly to go solar.

It would extend a tax break for residential property owners who have installed solar or equipment for other renewable energy since Jan. 1, 2013.

In addition, the amendment would establish a new exemption for businesses. Right now, if a business installs solar panels, it gets hit with a “tangible tax,” an assessment for equipment, fixtures and furniture that an enterprise or rental property uses. But as the ballot language says, the constitutional amendment would authorize the state Legislature to “exempt from ad valorem taxation the assessed value of solar or renewable energy source devices subject to tangible personal property tax, and … prohibit consideration of such devices in assessing the value of real property for ad valorem taxation purposes.”

This measure will allow Florida to get closer to realizing the full potential of solar energy. Consumers can trim energy costs; encourage energy independence and tamp down on fossil fuels’ contribution to climate change.

According to the U.S. Department of Energy, Floridians use 40 percent more electricity than the national average. No surprise there, with air conditioners running almost year-round. So, yes, we can do much better.

Unlike other constitutional amendments, placed on the ballot through petition drives because state lawmakers preferred to punt rather than take legislative action, Amendment 4 reached the ballot via a unanimous vote in the Legislature.

The state cannot abate local taxes without going through the Florida Constitution. Lawmakers, this time, were following mandated process. And Amendment 4’s backers are a wide-ranging bunch, including, according to the League of Women Voters of Florida — itself a supporter — The Nature Conservancy and the Florida Tea Party; The Sierra Club and the Florida Chamber of Commerce.

Amendment 4 not only would expand the use of clean energy, beneficial for Florida’s singular environment, it would add to the 6,500 solar jobs currently in the state and strengthen the economy while lowering solar consumers’ energy costs.

The Miami Herald recommends YES on Amendment 4.

Below are links to organizations that have information on Amendment 4 and Amendment 1 so that you can be an informed voter.

http://www.yeson4.org/

Support-solar http://www.flsolarchoice.org/

  1. Spread the word on Amendment 4; Urge people to vote YES on August 30th! As a result of our collective efforts, lawmakers and other coalition partners helped place a solar tax abatement amendment on Florida’s 2016 Primary Election ballot.  This initiative would remove a barrier to solar by exempting the panels and other renewable energy equipment from property taxes for 20 years. If passed in August, this policy will lower the cost of solar, increase clean energy jobs, and greatly expand solar development across the state! Vote YES on August 30th!
  2. Say NO to the utility-backed ‘solar’ petition this fall: Amendment 1 is an effort by big monopoly utilities to choke-off rooftop solar and keep a stranglehold on customers by preventing them from generating their own power. In March, the Supreme Court narrowly ruled 4-3 to allow the utility-backed petition on to the November ballot.  The utilities may have more money, but they are on the wrong side of this issue. We need you to fight alongside us and urge your friends, family and neighbor: VoteNO in NOvember!

https://ballotpedia.org/Florida_Solar_Energy_Subsidies_and_Personal_Solar_Use,_Amendment_1_(2016)

Costa Rica powers nation sans fossil fuels, serving as example for the region

By Nancy San Martin, nsanmartin@MiamiHerald.com
View the original article here

NEW POWER SOURCE: Arenal, a dormant volcano, is seen in the town of La Fortuna in the province of Guanacaste, Costa Rica. The power company managed to produce all of the electricity for the nation from renewable energy sources for 100 consecutive days ending in mid-March. The milestone was reached with the use alternative power sources, including hydroelectric power plants. Joe Raedle Getty Images

NEW POWER SOURCE: Arenal, a dormant volcano, is seen in the town of La Fortuna in the province of Guanacaste, Costa Rica. The power company managed to produce all of the electricity for the nation from renewable energy sources for 100 consecutive days ending in mid-March. The milestone was reached with the use alternative power sources, including hydroelectric power plants. Joe Raedle Getty Images

GUANACASTE, COSTA RICA

In the heart of this western province where scalding water emerges from the earth and peaks of volcanoes kiss the hovering clouds, sunshine, wind and rain have been culled to create a source of power that has earned this nation a gold star in renewable energy.

For 100 consecutive days ending in mid-March, Costa Rica did not use any fossil fuels to generate electricity. Instead, it relied on primarily hydropower plants to light up households across the country, with added power generated from wind, geothermal and solar projects.

Experts say Costa Rica’s fossil fuel-free streak is impressive though not a surprise: The nation of nearly 5 million people has pledged to become carbon neutral by 2021 and the country’s electricity matrix, on average, is already nearly 90 percent renewable, making Costa Rica the second most “renewable country” in Latin America following Paraguay in terms of electricity generation, said Juan Roberto Paredes, senior renewable energy specialist at the Inter-American Development Bank (IDB).

Paredes points to the country’s diversified sources for renewable energy as its hallmark. By relying on various sources, Costa Rica has been able to both provide electricity and keep costs down by not having to import a large amount of costly fossil fuels.

“The lesson to be learned is in diversification,” Paredes said. “You can have stability in the longer term, as it relates to electricity prices, if you rely on various renewable sources as the fuel price will always be zero.”

Felix Mormann, a University of Miami law professor who teaches and writes about environmental law and policy, said Costa Rica’s achievement is noteworthy.

“Sourcing 100 percent of energy needs from renewables is amazing,” he said. “The fact that they did not have to burn any fossil fuels is outstanding.”

Like other countries relying on renewable energy, Costa Rica gets most of its carbon-free electricity juice — about 80 percent — from hydropower plants operated by the state-run utility provider, Costa Rican Electricity Institute (ICE). But this year, geothermal, solar and wind energy sources have given the nation an additional boost to limit the use of coal or petroleum to keep light bulbs glowing and appliances humming.

Hydropower

At the ICE hydroelectric plant and reservoir in the shadow of the Arenal volcano near the town of Tilarán, the production of electrical power is generated through the use of the gravitational force of water stored in the reservoir that flows through turbines connected to large generators. This plant provides some 21 percent of energy for the country, said supervisor Alberto Sanchez Fernandez.

“Since we were children, we have been taught to respect nature,” Sánchez Fernández said. “In that sense, this country has gotten better because those lessons go back a generation and it’s ingrained in our children. The fact that my country is producing energy from 100 percent clean sources, makes me very proud and satisfied that we are helping protect this planet, the only place we have to live.”

Sánchez Fernández said when children visit the plant on field trips, “I always tell them that mankind, before dying, should have at least conceived a child and planted a tree.”

Along the hilltops, giant wind turbines like those of an airplane propeller, can be seen circulating at various speeds, depending on the strength of winds that flow through the area. The windmill project began in the 1980s and about 30 wind turbines can now provide electricity to about 26,000 homes.

“This accomplishment is the result of making use of our natural resources and experimentation,” said Carlos Manuel Quiros, a company spokesman.

Tilarán, the town’s name, comes from the indigenous word “Tilawa.” It means place of wind and rain.

Geothermal

Billboards in Bagaces and nearby towns dub the area as the cuna (cradle) of geothermal. Power lines emit a high-pitched sound that can be heard for miles, like crickets on steroids. And the smell of sulfur is reminiscent of the odor that comes from cracking warm hard-boiled eggs.

The geothermal plants Miravalles I y II use subterranean heat to produce electricity. Wells are drilled deep into the earth and the water that comes out of the wells are 85 percent liquid and 15 percent steam. The steam is used to turn large turbines, which run electrical generators. Some 35 wells in the area are used for production, said Darlyn Gutierrez Rodriguez, an assistant engineer.

“The advantages of geothermal is that it’s not dependent on seasonal variations,” she said. “It isn’t dependent on whether it rains or is windy or sunny. It’s constant production.”

Geothermal now contributes about 14 percent of Costa Rica’s energy and will likely grow as the government makes further investments. In a country with six active volcanoes and dozens more inactive, geothermal provides an exceptionally reliable source of power, experts said.

Solar

Just a short drive away, is a solar panel farm built with equipment donated by Japan. The project, comprised of 4,300 panels, began in 2012 and now provides electricity to about 550 homes, said supervisor Mauro Arias.

“For us, it’s been very novel, very important, because it’s an experimental plant,” he said. “Without a doubt, we have a good location for this solar plant…We are able to document, minute by minute, the output of solar energy…We are the pioneers in Central America.”

While the power produced by this method remains small, Arias said similar farms have been built in neighboring Nicaragua and Panama. “It’s cheaper, cleaner for the environment,” he said.

Other countries in the region could follow Costa Rica’s steps about diversification as they also have untapped renewable potential. This is the case of geothermal resources in the Andean countries where volcanic activity is comparable to Central America but no electricity so far is produced with the heat of the earth, said Paredes of the IDB.

But even as the use of renewable energy is applauded, there are potential setbacks. Droughts come from limited rainfall, which can affect electricity production. Wind and solar availability can vary from year to year. And, of course, there’s the issue of climate change.

“The but is maybe the variability of these renewable sources,” Paredes said. “We can’t be 100 percent sure of what will happen next year.”

Storing energy in an efficient manner also is a work in progress that will get better with technology. In Central America, the IDB is supporting the electricity market with Costa Rica and five other nations: Guatemala, El Salvador, Honduras, Panama and Nicaragua.

“In order to cope with this variability, you can diversify and use complementary renewable sources such as wind and hydro, use smarter grids to manage variations better and have more interconnections to other countries in case you have excess electricity,” Paredes said.

For Costa Rica, the more measurable results of its renewable energy success will be known by early 2016 when a full year worth of data will be available to compare with the previous year. By then, the largest hydropower plant in Central America should be in operation. The Reventazón Hydroelectric Project, located in the eastern province of Limón, is expected to be ready for operation by January.

Whether Costa Rica’s renewable energy model can be implemented in other countries will depend on the topography and climate, said Mormann of UM.

“Costa Rica is a small country and has a very special resource mix,” he said. “Costa Rica did not do this to do the rest of the world a favor. In their particular situation, it made the most sense. This is more about setting an example that it can be done.”
Read more here: http://www.miamiherald.com/opinion/issues-ideas/article19542720.html#storylink=cpy

 

How you can help make Florida the Sunshine State again

Julie

By Julie Lundin, LEED-AP ID+C,
Principal, Emerald Skyline Corporation 

 

 

Florida is undeniably sunny. “The Sunshine State” was adopted as the State Nickname in 1970. It is used on FL_Sunshinemotor vehicle licenses, welcome signs and marketing campaigns. While Florida promotes itself as the Sunshine State we are not utilizing our most abundant and natural resource, solar power.

What is solar power? It is energy from the sun that is converted into thermal or electrical energy. Solar energy is the cleanest and most abundant renewable energy source available. The U.S., including Florida, provides some of the richest solar resources in the world. Only two other states, California and Texas, have more rooftop solar power potential than Florida, according to the U.S. Department of Energy. Based on Florida’s size, rebounding economy and growing population our state should be a leader in the generation and promotion of solar energy.

So why isn’t Florida a solar energy leader?

The reason is simple: Florida’s large utility monopolies and lawmakers have worked successfully to block and control who can generate solar energy and what it can be used for; thereby restricting its use by homeowners and businesses. Florida utility monopolies exist today due to a law that was created over 100 years ago which was trying to avoid a tangle of power lines strung up by competing companies.  This same law restricts solar companies from installing solar panels on roofs and selling back electricity. It is considered a third party sale and is illegal in Florida.

  • Florida is now only one of four states in the nation that prohibit citizens from buying electricity from companies that will put solar panels on a building.

Due to the influence and power of Florida’s utility monopolies, there is a large effort to discourage renewable energy in the state. The large utilities are afraid of losing their monopoly and the lucrative profits that the government guarantees them. Recently lawmakers, at the direction of the utility companies, gutted the State’s energy savings goals and entirely eliminated Florida’s solar-rebate program.

Floridians should have access to solar power and free market choices. We should be allowed to contract directly with solar providers to power our homes and businesses with solar energy. We are currently being denied the right to choose solar as a power source. The free market and competition benefits all of us. Solar energy makes financial sense. That is why business leaders in America’s brightest, most competitive companies are increasingly choosing to install solar energy systems at their facilities. The price of solar energy has fallen dramatically over the past few years while the price of fossil fuel generation continues to experience volatility. America’s businesses are turning to solar power because it’s good for their bottom line.

  • According to a report by the Solar Energy Industries Association, Walmart is the top corporate user in the United States with 105 MW installed at 254 locations.
  • The average price of an installed commercial PV (photovoltaic) project in 2Q2014 was 14% less than the cost in 2013 and was over 45% less than it cost to complete in 2012.

Electricity costs represent a significant operating expense, and solar provides the means to reduce costs and hedge against electricity price increases.

  • The Solar Means Business report noted that the top 25 companies for solar capacity had more than 569 MW of solar PV at 1,110 different facilities in a survey conducted last August. These results represent a 28% increase over the prior year and a 103% increase over 2012.

Clearly, solar power is a great untapped resource for the Sunshine State – one that can benefit residents as well as businesses. It is time to enable Floridians to have unfettered access to this inexpensive energy source – and you can help in the process:

The Florida resident-led solar group, Floridians for Solar Choice, is seeking to make solar more accessible in the state. They are seeking your signature on a ballot petition.

  • The petition seeks to expand solar choice by allowing customers the option to power their homes or businesses with solar power and chose who provides it to them.

Floridians for Solar Choice have reached 72,000 signatures on their petition which clears the way for it to be reviewed by Florida’s Supreme Court.

  • The Supreme Court will decide whether or not the petitions language legally qualifies it to be a ballot initiative for Floridians in 2016.

Getting its petition on the 2016 ballot is the main goal for Floridians for Solar Choice. They need over 600,000 more signatures to have this critical citizen initiative to be put on the ballot for next year.

Please visit their website to learn about the solar initiative to remove this legal barrier to making Florida the Sunshine State again, and, more importantly, to sign the petition, go to: www.FLsolarchoice.org.

10 sustainable innovations: from solar-powered suitcases to floating classrooms

Laura Storm, the guardian, Wednesday 29 October 2014 03.00 EDT

View the original article here

The 2014 Sustainia Awards, chaired by Arnold Schwarzenegger, attracted more than 900 submissions for projects and technologies representing 10 different sectors from food, fashion and, city development to transportation and healthcare. Collectively, these projects are deployed in more than 84 countries.

The runners up for the award are showcased here and the winner will be announced in Copenhagen on Thursday 30 October. The ceremony will celebrate these innovations ahead of the release of the Intergovernmental Panel on Climate Change’s (IPCC) anticipated report on climate change, due to be finalised 31 October.

  1. Food finalist: Netafim (Israel) – gravity-powered irrigation

Netafim offers low-tech irrigation. Photograph: Netafim

Netafim is behind a low-tech irrigation system for smallholder farmers in developing countries which increases and secures yields while saving water and cutting costs. It drips precise quantities of water and nutrients right at the root zone of crops while an elevated tank distributes the water using gravity.

This minimises the need for electricity and investments in infrastructure. The UN estimates that 500 million smallholder farmers provide over 80% of the food consumed in the developing world. Irrigation systems are vital to sustain agriculture as it addresses water scarcity and soil erosion. The solution is commercially viable with a payback-time of about a year, making it fit for microfinance projects.

  1. Transportation finalist: 8D technologies (Canada) – bike sharing app

Spotcycle bike-sharing app. Photograph: 8D Technologies

As a mode of transport, the bicycle is one of the lowest emitter of greenhouse gases – even with the CO2 emissions of the food you need to power a bike. This helps explain why bike-sharing systems are being adopted increasingly by cities. The Spotcycle app from 8D technologies aims to make bike-sharing more convenient and smartphone-friendly. The app locates nearby bike stations and communicates availability, maps out bike paths and helps with navigation. The app is already in sync with cities in North America, Australia and Europe.

  1. Buildings finalist: Advantix (USA) – air-conditioners which use saltwater

Advantix’s saltwater air conditioning system. Photograph: Advantix

Air conditioners use about 5% of all electricity produced in the US. As a result, 100m tons of carbon dioxide are released each year. Advantix’s air conditioning system uses saltwater which means it needs 40% less energy than normal systems. Whereas air-conditioning systems normally chill the air to remove humidity and then reheat it in a highly energy-intensive process, Advantix’s air-conditioners funnel the air through non-toxic fluid saltwater instead. The process dehumidifies the air without the need for re-heating.

  1. Fashion finalist: I:CO (Switzerland) – textile recycling

An I:CI clothing drop-off recepticle. Photograph: I:CO

Clothes are often discarded after the first or second life cycle, and apparel accounts for up to 10% of a western consumer’s environmental impacts. Through an advanced take-back system, I:CO works to keep apparel, footwear and other textiles in a continuous closed-loop cycle. Used shoes and clothing are collected in stores and retail outlets, where customers are financially rewarded for depositing their used items. Once collected, the textiles are sorted according to more than 350 criteria for designation. Used clothes can be labeled suitable for: second-hand sale, recycling into fibres and paddings for new products, or upcycling.

 

 

  1. IT Finalist: Fairphone (Netherlands) – A smart-phone with social values

Fairphone conflict-free phones. Photograph: Fairphone

Through development, design and production, social enterprise Fairphone works to create positive social impact in the consumer electronics supply chain – from responsible mining, decent wages and working conditions to reuse and recycling.

Fairphone began by redesigning the processes behind the production, making phones that use conflict- free minerals and are assembled in a factory with a worker-controlled welfare fund. To date, Fairphone has sold nearly 50,000 phones from its first two production runs.


 

  1. Health finalist: We Care Solar (USA) – solar suitcases giving life

The Solar Suitcase provides lighting for medical professionals. Photograph: Solar suitcase

Preventable causes related to pregnancy and childbirth claim 800 lives daily and 99% of cases happen in developing countries. We Care Solar has created a sustainable solution. The Solar Suitcase provides solar electricity for medical lighting, mobile communication and essential medical devices for rural areas and humanitarian settings. This enables safe and timely obstetric care, which ultimately improves maternal and neonatal outcomes. Additionally, the innovation allows emergency surgeries to be conducted around-the-clock in rural hospitals. The Solar Suitcase has been introduced to more than 600 healthcare facilities in 20 countries.


 

  1. City Finalists: Wecyclers (Nigeria) – Pedal-powered recycling

Wecyclers collectors. Photograph: Wecyclers

In Lagos, Nigeria, Wecyclers is fuelling social and environmental change by enabling people in low-income communities to make money from unmanaged waste piling up in their streets.

It is a response to the local waste crisis; the municipal government collects only 40% of city garbage. The Wecyclers initiative has deployed a fleet of cargo bicycles to pick-up, collect and recycle garbage in low-income neighbourhoods. Families are encouraged to recycle their bottles, cans and plastics through an SMS-based programme. For every kilogram of material recycled, the family receives Wecyclers points on their cell phone. Families can then redeem points for goods such as cell phone minutes, basic food items or household goods. The initiative adds to the local economy by hiring personnel locally.

  1. Resource finalist: Newlight Tech (USA) – carbon-negative plastic

Carbon-negative plastic. Photograph: Newlight

With its novel technology that converts greenhouse gases into plastic material, AirCarbon has disrupted the market by replacing oil-based plastics with a sustainable product that is competitive in both price and performance. It is made from a process where carbon in the air is captured and used in manufacturing. AirCarbon uses pollutants as resources to make products otherwise made from oil. Products made from AirCarbon are carbon-negative even after calculating the emissions from the energy used in production. AirCarbon is currently used to make chairs, bags and cell phone cases.


 

  1. Education finalists: Shidhulai Swanirvar Sangstha (Bangladesh) – school boats combatting climate change

Floating school rooms. Photograph: Shidhulai Swanirvar Sangstha

More than one million Bangladeshis could be displaced by rising sea levels by 2050. One consequence is that children cannot attend school for long periods of time, making it harder for them to escape poverty. By building a fleet of solar-powered school boats, the Bangladeshi initiative Shidhulai Swanirvar Sangstha has secured year-round education in flood-prone regions of Bangladesh. Each floating school boat collects students from different riverside villages, ultimately docking at the last destination where on-board classes begin. Solar lighting makes the schedule flexible, which provides for additional educational programs in the evening. Shidhulai’s floating schools model has been replicated in Nigeria, Cambodia, Philippines, Vietnam and Zambia.

  1. Energy Finalists: Opower (USA) – personal energy-efficient expert

Utilities use Opower to share money-saving insights with custumers. Photograph: Opower

Through use of big data, Opower has given energy utilities a new way of engaging with customers in order to improve energy efficiency. The software solution combines cloud technology, big data and behavioural science to produce data analyses and personalised information on how to save energy. To motivate reductions in energy consumption, utilities use Opower to share money-saving insights with custumers. Opower can also show households their energy usage compared to neighbours; an effective method in motivating people to save energy. Opower has enabled savings of over 4TWh of energy, which is equivalent to $458m (£283.1) in bill savings.

Laura Storm is executive director at Sustainia