solar

The Importance of an Energy Assessment for Commercial Buildings

By John Losey, Owner and Founder The BP Group, Energy Manager Today, 9/1/2016

View the original article here.

Building owners and property managers that take on the responsibility of limiting energy consumption can be looked at as environmental leaders. While energy management adds extra tasks to everyday lists, the benefits outweigh the time and money spent, which is usually returned in savings.

There are numerous areas to take into consideration when it comes to commercial buildings, and being that commercial buildings are generally large, the impact can be large as well. These areas include the HVAC system, chillers, windows, lighting, electrical equipment, and any other factors that may be contributing to the building’s energy consumption.

While there are various ways to be involved with bettering the environment outside of where you live and work, starting in a place that you occupy everyday has the potential of having long term results if the actions are carried through as often as you’re there.

Consider creating an outlined approach for managing the building’s energy with these areas in mind:

Identify Sustainable Alternatives Where Energy is Being Used:

  • Are there upgraded, energy-efficient versions of the equipment you can be using instead?
  • Could you use different settings on the equipment?

Assess the Purpose of Every Area:

  • Is the lighting being utilized in every room?
  • Is the size of the HVAC system an adequate fit for the building and its purpose?

Evaluate Maintenance Plans:

  • How frequent are the utilities maintained?
  • Do the maintenance technicians practice with energy efficiency in mind?

Look for Possible Areas of Energy Loss:

  • Are the building’s windows sealed properly?
  • Is the equipment too old for efficient functioning?

These are questions you should ask yourself if you’re trying to assess energy consumption and find that alternative route to save not only energy, but money as well.

After addressing these questions, you may find yourself planning to make some changes. Here is the information you should know for doing so:

Energy Efficient Equipment: Whether it’s the HVAC system, the utility lighting or the other various appliances being used in the building, there are energy-efficient options to consider. This includes ones with ENERGY STAR ratings, which match the standards set by the government.

Settings & Thermostats: Just by being knowledgeable about specific settings and the different types of available thermostats, you can be saving a substantial amount of energy. Depending on the type of building and the function(s) of the building, settings can be applied to use less energy in an area that doesn’t need it. The same idea goes for thermostats. Programmable thermostats allow for precise regulation of energy consumption. This means making sure the temperatures aren’t set too high or too low when the building or part of a building isn’t in use. Programmable thermostats keep the location comfortable when needed, but help save energy when it’s not.

Lighting: It’s better to be the building that turns its lights off when it isn’t being used, than a building that keeps them on 24/7. It’s also important to consider energy-saving types, such as LED or solar. With these kinds, you can also invest in timers and dimmers.

HVAC Size: According to ENERGY STAR, “at least 25% of all rooftop HVAC units are oversized, resulting in increased energy costs and equipment wear.” Determining what size HVAC system the building needs is a job for a professional technician, and it’s an important part of the overall building assessment.

Maintenance: Building maintenance is not only important for saving energy and money, it’s important for the building’s health and those occupying it. This includes electrical, HVAC, plumbing, etc. While there are tasks you can manage on your own, there are specific tasks that are recommended for the hands of a professional technician. Whatever the area, it’s important to have maintenance scheduled. Having a definite schedule helps to prevent sudden issues, which prevents sudden energy loss as well.

Technicians: Certain companies know the importance of offering energy-efficient services. This means that they practice in ways that are beneficial for the environment. Research the companies in your area and look for the ways they’re working to save energy and you money. This is an important quality, and more companies are beginning to realize that.

Windows, Replacements & Other Areas of Loss: Other ways to assess energy is by looking into the not so obvious. This includes windows, old systems that don’t show signs of stress until it’s too late, and too many running appliances and pieces of equipment causing heat. If windows aren’t sealed properly, especially in summer and winter, your HVAC system may be working harder than it has to in order to reach the desired temperature. Leaks of hot or cold air will cause this. Another concern are systems that don’t show signs of stress. If the system is old, it’s definitely recommended to have it maintained, even if you think otherwise. The inside has moving parts that may be working very hard to keep it running, and the machine giving out might be the first sign if you wait too long. Lastly, there may be too much heat. Too many heat producing appliances or pieces of equipment may cause the air conditioner to work harder, similar to an open window on a hot summer day.

Commercial buildings don’t function alone, they need the help of energy, and all building owners and property managers can help conserve it.

John Losey is the owner and founder of The BP Group, a leader in Commercial HVAC Services

Solar Technology Update: New Device Does the Work of Plants

KG ResizeBy Kendall Gillen, LEED Green Associate

ARTIFICIAL-LEAFThe latest in solar technology is unlike what you would expect. Traditionally, solar cells harness sunlight and convert it into electricity, which is then stored in batteries. This is one of the cleanest forms of renewable energy that can be used to power your home or business. This type of solar cell isn’t going away any time soon, but a different type engineered recently by researchers at the University of Illinois is capable of doing the work of plants. This new solar cell could be a game-changer as it “cheaply and efficiently converts atmospheric carbon dioxide directly into usable hydrocarbon fuel” according to Solar Daily. The process is powered entirely by sunlight and requires no battery storage.

What does this new solar cell mean as far as real world problem solving? The benefits are two-fold. If entire solar farms were made up of these so-called artificial leaves, it could greatly reduce the amount of carbon in the atmosphere while simultaneously generating energy-rich fuel. Essentially, we can reverse some of the climate change damage done from burning fossil fuels and decrease the concentration of atmospheric CO2.

The product of this process is synthesis gas or syngas, which can be burned itself or converted into other hydrocarbon fuels. The artificial leaves convert carbon dioxide into fuel at a cost comparable to one gallon of gasoline. Read below for an explanation of the chemical process that made this possible as explained by Solar Daily:

“The new solar cell is not photovoltaic – it’s photosynthetic,” says Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering at UIC and senior author on the study.

Chemical reactions that convert CO2 into burnable forms of carbon are called reduction reactions, the opposite of oxidation or combustion. Engineers have been exploring different catalysts to drive CO2 reduction, but so far such reactions have been inefficient and rely on expensive precious metals such as silver, Salehi-Khojin said.

“What we needed was a new family of chemicals with extraordinary properties,” he said.

Salehi-Khojin and his coworkers focused on a family of nano-structured compounds called transition metal dichalcogenides – or TMDCs – as catalysts, pairing them with an unconventional ionic liquid as the electrolyte inside a two-compartment, three-electrode electrochemical cell. The best of several catalysts they studied turned out to be nanoflake tungsten diselenide.

“The new catalyst is more active; more able to break carbon dioxide’s chemical bonds,” said UIC postdoctoral researcher Mohammad Asadi. In fact, he said, the new catalyst is 1,000 times faster than noble­metal catalysts — and about 20 times cheaper.

solar farm panelsThis is truly a breakthrough in the field of solar technology that can have large and small-scale applications. This is the first solar cell that could render fossil fuels obsolete based on its affordability and efficiency. Fuel could be produced locally as opposed to relying on unstable regions. Scientists have been working since the first ‘artificial leaf’ was produced last year to find a cost-effective process that uses only sunlight and carbon dioxide to mimic the natural process of photosynthesis in plants to produce fuel, and it appears they finally have something that will stick.

Emerald Skyline is always looking for ways to provide superior products and services to meet our client’s needs. My bachelor’s degree in biology allows me to bring a unique perspective on sustainability and mimicking the biological processes found in nature within the built environment. This allows us to provide our clients the latest technologies and largest and most open network available today.

Information on Emerald Skyline is available on our website: www.emeraldskyline.com.

Using Daylighting to Save Energy and Enhance Views

JulieBy Julie Lundin, NCIDQ, LEED AP ID+C, ASID, Director, Emerald Skyline Corporation

My post on the design and progress of our commercial building focused on an overview of what sustainable design is and how it impacts a building’s design and construction and on-going building operations. You can see that post here. A sustainable building utilizes many concepts, solutions and products to incorporate the six fundamental principles of sustainable design:

  • Optimize Site Potential
  • Optimize Energy Use
  • Protect and Conserve Water
  • Optimize Building Space and Material Use
  • Enhance Indoor Environmental Quality (IEQ)
  • Optimize Operational and Maintenance Practices

This post explores the concept of Daylighting and Views, which impacts two areas of the fundamental principles of sustainable design: Optimization of Energy Use and Enhance Indoor Environmental Quality (IEQ).

Daylighting is the ability to maximize or control the use of natural daylight in a building in order to reduce the need for artificial lighting and reduce energy use. Access to daylight inside a building helps create a healthy, comfortable and productive environment for its occupants while reducing as much as one-third of total building energy costs.

Implementing daylighting on a project goes beyond simply listing components to be gathered and installed. Daylighting requires an integrated design approach to be successful. It can involve decisions about the building layout, site, climate, building components such as windows and skylights, lighting controls and lighting design criteria.

The science of daylighting design is not just how to provide enough direct daylight to an occupied space, but how to do so without any undesirable side effects. Beyond adding windows or skylights to a space, it involves carefully balancing heat gain and loss, glare control, and variations in daylight availability.

To implement daylighting into a project it requires systems, technologies and architecture. Below are some of the typical components that are utilized:

  • Daylight-optimized building footprint
  • Climate-responsive window-to-wall area ratio
  • High-performance glazing
  • Daylighting-optimized fenestration design
  • Skylights
  • Tubular daylight devices
  • Solar shading devices
  • Daylight redirection devices
  • Daylight-responsive electric lighting controls
  • Daylight-optimized interior design (furniture, space planning, room surface finishes)

Since daylighting components are normally integrated with the original building design, it may not be possible to consider them for a retrofit project. We are fortunate that the retrofit of our building in Boca Raton lends itself to use daylighting to positively impact two of the fundamental principles of sustainable design. Below are some of the components that our project will utilize:

  • Optimized Building Footprint – Although usually limited to new construction, our building and site enables us to make design decisions that will allow us to create a daylight-optimized footprint. The redesign of our building will maximize south and north exposures, and minimize east and west exposures. Our new façade will face due south which is the optimal orientation for best solar access and ease of control.
  • Climate-Responsive Window-to-Wall Area – With the building sited facing south, we are specifying high-performance glazing (windows). The area is being designed to be a careful balance between admission of daylight and summertime heat gain since our project is located in South Florida.
  • High-Performance Glazing – High performance windows will generally admit more light and less heat than a typical window, allowing for daylighting without negatively impacting the building cooling load in the summer. For our project, being located in South Florida, high performance glazing is very important.
  • Daylighting-Optimized Fenestration Design – An optimized fenestration design will increase the system performance. Windows have two essential functions in a building. 1) Daylight delivery or admittance, and 2) provide a view to the occupants. Daylight admittance requires a window with high visible light transmittance and windows for view need to be clear. Our daylighting fenestration design will be composed of both of these with correct height requirements.
  • Skylights and Tubular Daylight Devices – Both of these devices utilize what is called toplighting, or admitting daylight from above. We are incorporating the use of tubular devices in our building design. These devices employ a highly reflective film on the interior of a tube to channel light from a lens at the roof to a lens at the ceiling plane. They tend to be much smaller than a typical skylight, yet still deliver sufficient daylight for the purpose of dimming the electric lighting. They will be used on the second floor where there will be interior spaces that do not have access to any windows due to our north side zero lot line site.
  • Daylight Redirection Devices – Redirection devices take incoming direct beam sunlight and redirect it. These devices serve two functions: glare control, where the sun is directed away from the eyes of the occupants, and daylight penetration, where sunlight is distributed deeper into a space that would not be allowed otherwise. We will be utilizing both of these methods in our project.   Lightshelves will be used on the south façade of the building, on both floors. The second floor interior will contain clerestory glass components that will distribute light into rooms that have no access to daylight.
  • Electric Lighting Controls - Lighting controls are essential to any daylighting system. No daylighting design will save any energy unless the electric lights are dimmed or turned off when there is sufficient illumination from daylight. If daylighting features such as windows and tubes are not paired with daylight-responsive dimming controls, then the daylighting-enhanced building will likely use more energy, not less, than a comparable building without any daylighting features. Lighting controls consist of continuous dimming or stepped-ballasts in the light fixtures, and photocells to sense the available light or turn off the electric lighting in response. We will incorporate a lighting control system in our building to take full advantage of our daylighting design and the energy savings it will provide.
  • Interior Design – An often-overlooked element in a successful daylighting design is the interior design. The interior design should consider furniture design, placement, and room surface finishes and how they relate to daylight performance. Interior walls may interfere with daylight transmission into a space. The south facing façade of our project, on the first floor will have an open concept so that daylight can penetrate and distribute more fully into the interior space. Walls and ceilings will be as reflective as possible.

To design and implement a daylighting strategy into a project requires a collaborative design process and the daylighting strategies must balance with other project design goals. Access to daylight inside buildings provides a healthier and comfortable environment for its occupants and is also linked to greater productivity. When designed with proper glare control and minimized solar heat gain, daylighting provides high-quality light while reducing energy use for lighting and for cooling.

 

 

http://www.wbdg.org/resources/daylighting.php  

Costa Rica powers nation sans fossil fuels, serving as example for the region

By Nancy San Martin, nsanmartin@MiamiHerald.com
View the original article here

NEW POWER SOURCE: Arenal, a dormant volcano, is seen in the town of La Fortuna in the province of Guanacaste, Costa Rica. The power company managed to produce all of the electricity for the nation from renewable energy sources for 100 consecutive days ending in mid-March. The milestone was reached with the use alternative power sources, including hydroelectric power plants. Joe Raedle Getty Images

NEW POWER SOURCE: Arenal, a dormant volcano, is seen in the town of La Fortuna in the province of Guanacaste, Costa Rica. The power company managed to produce all of the electricity for the nation from renewable energy sources for 100 consecutive days ending in mid-March. The milestone was reached with the use alternative power sources, including hydroelectric power plants. Joe Raedle Getty Images

GUANACASTE, COSTA RICA

In the heart of this western province where scalding water emerges from the earth and peaks of volcanoes kiss the hovering clouds, sunshine, wind and rain have been culled to create a source of power that has earned this nation a gold star in renewable energy.

For 100 consecutive days ending in mid-March, Costa Rica did not use any fossil fuels to generate electricity. Instead, it relied on primarily hydropower plants to light up households across the country, with added power generated from wind, geothermal and solar projects.

Experts say Costa Rica’s fossil fuel-free streak is impressive though not a surprise: The nation of nearly 5 million people has pledged to become carbon neutral by 2021 and the country’s electricity matrix, on average, is already nearly 90 percent renewable, making Costa Rica the second most “renewable country” in Latin America following Paraguay in terms of electricity generation, said Juan Roberto Paredes, senior renewable energy specialist at the Inter-American Development Bank (IDB).

Paredes points to the country’s diversified sources for renewable energy as its hallmark. By relying on various sources, Costa Rica has been able to both provide electricity and keep costs down by not having to import a large amount of costly fossil fuels.

“The lesson to be learned is in diversification,” Paredes said. “You can have stability in the longer term, as it relates to electricity prices, if you rely on various renewable sources as the fuel price will always be zero.”

Felix Mormann, a University of Miami law professor who teaches and writes about environmental law and policy, said Costa Rica’s achievement is noteworthy.

“Sourcing 100 percent of energy needs from renewables is amazing,” he said. “The fact that they did not have to burn any fossil fuels is outstanding.”

Like other countries relying on renewable energy, Costa Rica gets most of its carbon-free electricity juice — about 80 percent — from hydropower plants operated by the state-run utility provider, Costa Rican Electricity Institute (ICE). But this year, geothermal, solar and wind energy sources have given the nation an additional boost to limit the use of coal or petroleum to keep light bulbs glowing and appliances humming.

Hydropower

At the ICE hydroelectric plant and reservoir in the shadow of the Arenal volcano near the town of Tilarán, the production of electrical power is generated through the use of the gravitational force of water stored in the reservoir that flows through turbines connected to large generators. This plant provides some 21 percent of energy for the country, said supervisor Alberto Sanchez Fernandez.

“Since we were children, we have been taught to respect nature,” Sánchez Fernández said. “In that sense, this country has gotten better because those lessons go back a generation and it’s ingrained in our children. The fact that my country is producing energy from 100 percent clean sources, makes me very proud and satisfied that we are helping protect this planet, the only place we have to live.”

Sánchez Fernández said when children visit the plant on field trips, “I always tell them that mankind, before dying, should have at least conceived a child and planted a tree.”

Along the hilltops, giant wind turbines like those of an airplane propeller, can be seen circulating at various speeds, depending on the strength of winds that flow through the area. The windmill project began in the 1980s and about 30 wind turbines can now provide electricity to about 26,000 homes.

“This accomplishment is the result of making use of our natural resources and experimentation,” said Carlos Manuel Quiros, a company spokesman.

Tilarán, the town’s name, comes from the indigenous word “Tilawa.” It means place of wind and rain.

Geothermal

Billboards in Bagaces and nearby towns dub the area as the cuna (cradle) of geothermal. Power lines emit a high-pitched sound that can be heard for miles, like crickets on steroids. And the smell of sulfur is reminiscent of the odor that comes from cracking warm hard-boiled eggs.

The geothermal plants Miravalles I y II use subterranean heat to produce electricity. Wells are drilled deep into the earth and the water that comes out of the wells are 85 percent liquid and 15 percent steam. The steam is used to turn large turbines, which run electrical generators. Some 35 wells in the area are used for production, said Darlyn Gutierrez Rodriguez, an assistant engineer.

“The advantages of geothermal is that it’s not dependent on seasonal variations,” she said. “It isn’t dependent on whether it rains or is windy or sunny. It’s constant production.”

Geothermal now contributes about 14 percent of Costa Rica’s energy and will likely grow as the government makes further investments. In a country with six active volcanoes and dozens more inactive, geothermal provides an exceptionally reliable source of power, experts said.

Solar

Just a short drive away, is a solar panel farm built with equipment donated by Japan. The project, comprised of 4,300 panels, began in 2012 and now provides electricity to about 550 homes, said supervisor Mauro Arias.

“For us, it’s been very novel, very important, because it’s an experimental plant,” he said. “Without a doubt, we have a good location for this solar plant…We are able to document, minute by minute, the output of solar energy…We are the pioneers in Central America.”

While the power produced by this method remains small, Arias said similar farms have been built in neighboring Nicaragua and Panama. “It’s cheaper, cleaner for the environment,” he said.

Other countries in the region could follow Costa Rica’s steps about diversification as they also have untapped renewable potential. This is the case of geothermal resources in the Andean countries where volcanic activity is comparable to Central America but no electricity so far is produced with the heat of the earth, said Paredes of the IDB.

But even as the use of renewable energy is applauded, there are potential setbacks. Droughts come from limited rainfall, which can affect electricity production. Wind and solar availability can vary from year to year. And, of course, there’s the issue of climate change.

“The but is maybe the variability of these renewable sources,” Paredes said. “We can’t be 100 percent sure of what will happen next year.”

Storing energy in an efficient manner also is a work in progress that will get better with technology. In Central America, the IDB is supporting the electricity market with Costa Rica and five other nations: Guatemala, El Salvador, Honduras, Panama and Nicaragua.

“In order to cope with this variability, you can diversify and use complementary renewable sources such as wind and hydro, use smarter grids to manage variations better and have more interconnections to other countries in case you have excess electricity,” Paredes said.

For Costa Rica, the more measurable results of its renewable energy success will be known by early 2016 when a full year worth of data will be available to compare with the previous year. By then, the largest hydropower plant in Central America should be in operation. The Reventazón Hydroelectric Project, located in the eastern province of Limón, is expected to be ready for operation by January.

Whether Costa Rica’s renewable energy model can be implemented in other countries will depend on the topography and climate, said Mormann of UM.

“Costa Rica is a small country and has a very special resource mix,” he said. “Costa Rica did not do this to do the rest of the world a favor. In their particular situation, it made the most sense. This is more about setting an example that it can be done.”
Read more here: http://www.miamiherald.com/opinion/issues-ideas/article19542720.html#storylink=cpy

 

LEED Project Update

4/19/15

Julie

 

By Julie Lundin, Founder,
Director of LEED Process Management for Emerald Skyline Corporation

 

Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. This distinctive commercial building will include many sustainable features with the intent to obtain LEED certification from the USGBC.

Existing

Existing

Proposed

Proposed

 

 

 

 

 

 

 

 

 

 

Proposed LEED Certified Building

For general information on this project please Click Here to see our last post.

We have been busy working on the design and drawings in preparation for submission to the City of Boca Raton Development Services Department. The design of the building has taken many twists and turns over the last few months. Since we are doing a major renovation and constructing a second floor, the design and location of the stairs and an elevator have been instrumental in our building’s design. As with any project, the site plan and its setbacks limit the building footprint that will be utilized.

Based on our site plan, we do have the space to bump the front of the building out to accommodate our new staircase. This allows us to construct the stairs without having to penetrate the existing building ceiling membrane. In addition, it creates an interesting design element that does not deduct precious square footage for the stairs construction.

We have also decided to locate the elevator on the outside of the building. Again, an exterior location will not deduct square footage from the base building plan. Since the elevator shaft will be located on the exterior, building fire codes will be different than if the elevator was located internally. We are anticipating that the elevator will be a prominent design feature and contribute to the aesthetics of our project.

As stated in our previous post, this project is a proposed LEED certified building. A key component of a LEED project is its reduced energy use. Our initial design utilized solar rooftop panels to generate power for the building even with the hopes of generating enough power to sell back to the grid. Florida’s large utility monopolies and lawmakers have worked successfully to block and control who can generate solar energy and what it can be used for; thereby restricting its use by homeowners and businesses. The Florida legislature, at the direction of the utility companies, have gutted the state’s energy savings goals and entirely eliminated Florida’s solar-rebate program. Due to this situation, we are now exploring alternative methods of energy including fuel cell technology powered by natural gas.

There is a pro-solar group in Florida, Floridians for Solar Choice, that is seeking to make solar more accessible in the state. Their ballot petition seeks to expand solar choice by allowing customers the option to power their homes or businesses with solar power and chose who provides it to them. Please visit their website to learn about this initiative and sign the petition. www.FLsolarchoice.org.

Welcome to Sustainable Benefits – Let’s begin with the benefits of doing a commercial building sustainable retrofit….

2/12/15

PJ Picture
By Paul L. Jones
, Founder,
Director, Financial Advisory Services for Emerald Skyline Corporation

 

“Who is more foolish: The child afraid of the dark or the man afraid of the light?” (Maurice Freehill, British WW I flying ace).

Figure 1 Empire State Building - LEED Gold

Figure 1 Empire State Building – LEED Gold

Throughout my 36-year career in commercial real estate, commercial buildings have generally been classified from A to C based on location, construction quality and tenancy. Class A buildings represent the cream of the crop. They secure credit-quality tenants, command the highest rents, enjoy premium occupancies, are professionally managed and have a risk profile that supports lower cap rates and higher values. Class B buildings are similar to Class A but are dated yet not functionally obsolete. Class C buildings are generally over 20 years old, are architecturally unattractive, in secondary or tertiary locations and have some functional obsolescence with out-dated building systems and technology. NOTE: No formal international standard exists for classifying a building, but one of the most important things to consider about building classifications is that buildings should be viewed in context and relative to other buildings within the sub-market; a Class A building in one market may not be a Class A building in another.

Based on years analyzing investments in income properties, it appears to me that in the recovery from the Great Recession the commercial real estate market has evolved to include energy efficiency and environmental design as a requirement for improving the marketability of a building – not to mention optimizing its operating income and value.

COMMERCIAL OFFICE BUILDINGS

On December 1, 2014, Buildings.com, in an article entitled “GSA Verifies Impact of Green Facilities,” reported that a study conducted by GSA and the Pacific Northwest Laboratory conducted a post-occupancy study of Federal office buildings, which varied in age and size and had been retrofit to reduce energy and water consumption. The following results were based on a review of one year of operating data and surveys of the occupants which was compared to the national average of commercial buildings: High performance, green buildings:

  • cost 19% less to maintain
  • Use 25% less energy and water
  • Emit 36% fewer carbon dioxide emissions
  • Have a 27% higher rate of occupant satisfaction.

One of the most famous sustainable retrofit projects undertaken was the updating of the 2.85 msf Empire State Building whose ownership directed that sustainability be at the core of the building operations and upgrades implemented as part of the $550 million Empire State ReBuilding program. According to Craig Bloomfield, of Jones Lang LaSalle (JLL), “After the energy efficiency retrofit was underway, JLL led a separate study of the feasibility study of LEED certification” which “showed that LEED Gold certification was within reach at an incremental cost of about $0.25 psf.

Graphics on financial benefits of high-performance buildings

Source: Institute for Market Transformation: Studies consistently show that ENERGY STAR and LEED-certified commercial buildings achieve higher rental rates, sales prices and occupancy rates.

Source: Institute for Market Transformation: Studies consistently show that ENERGY STAR and LEED-certified commercial buildings achieve higher rental rates, sales prices and occupancy rates.

According to the report “Green Building and Property Value” published by the Institute for Market Transformation and the Appraisal Institute, a trend is emerging where green buildings are both capturing higher quality tenants and commanding rent premiums. As indicated by the above graph summarizing four national studies for commercial office buildings back up this trend on rents and occupancy, as “certified green buildings outperform their conventional peers by a wide margin.”

  • According to the EnergyStar.gov website, “Transwestern Commercial Services, a national full-service real estate firm, has generated impressive returns through sound energy management. In 2006, Transwestern invested over $12 million in efficiency upgrades, for an average 25% energy savings. The Company estimates that dedication to energy management has increased the portfolio’s value by at least $344 million.”
  • According to John Bonnell and Jackie Hines of JLL – Phoenix, “In Phoenix, owners of LEED-certified buildings can capture a premium of 29 percent over buildings without this distinction.” The premium for Green buildings had disappeared during the Great Recession and reemergence in the first quarter of 2014 as a result of improving Phoenix market dynamics which is being realized in other major markets as well.

RETAIL

For retail buildings, the tenants are driving the shift to sustainability with green building as consumers become increasingly aware of the environment and the need to reduce, reuse and recycle. According to the “LEED in Motion: Retail” report published by the USGBC in October 2014, “LEED-certified retail locations prioritize human health: among their many health benefits, they have better indoor environmental quality, meaning customers and staff breathe easier and are more comfortable. In a business where customer experience is everything, this is particularly valuable.’ Green retail buildings also out-perform conventional buildings and generate financial savings:

  • On average, Starbucks, which just opened their 500th LEED-certified store, has realized an average savings of 30% in energy usage and 60% less water consumption.
  • McGraw-Hill Construction, which surveyed retail owners, found that green retail buildings realized an average 8% annual savings in operating expenses and a 7% increase in asset value.

It is noteworthy that, according to the third annual Solar Means Business report published by the Solar Energy Industries Association, the top corporate solar user in the United States is Walmart. In fact, almost half of the top-25 solar users are retailers (the others are Kohl’s, Costco, IKEA (9 out of 10 stores are solar powered), Macy’s, Target, Staples, Bed Bath & Beyond, Walgreens, Safeway, Toys ‘R’ Us, and White Rose Foods). Other Top-25 solar users with a significant retail footprint include Apple, L’Oreal, Verizon and AT&T.

In the competitive retail market, the study also noted that being distinguished for pro-active and responsible corporate social responsibility attracts customers and investors.

MULTI-FAMILY BUILDINGS

In a study of 236 apartment complexes conducted by Bright Power and The Stewards of Affordable Housing released last July, 236 properties in two programs, HUD’s nationwide Green Retrofit Program and the Energy Savers program available from Illinois’ Elevate Energy and the Community Investment Corp. One year of pre- and post-retrofit utility bills were analyzed. The researchers found the following:

  • Properties in the Green Retrofit Program had realized a 26% reduction in water consumption – or $95/unit annually.
  • The energy consumption in the Green Retrofit Program was reduced by 18% representing an annual savings of $213/unit.
  • Surveyed buildings in the Energy Savers program had reduced gas consumption by 26% and had reduced excess waste by an average of 47%.
  • The water saving measures in the Green Retrofit program reflected a simple payback period of one year while the energy savings measures had a simple payback period of 15 years.

In an article be Chrissa Pagitsas, Director – Multi-family Green Initiative for Fannie Mae, reports that 17 multifamily properties have achieved Energy Star® certification with two of them, Jeffrey Parkway Apartments in Chicago and ECO Modern Flats in Fayetteville, Arkansas, receiving financing from Fannie Mae.

  • The Eco Modern Flats complex is over 40 years old. With the goal of reducing operating expenses, the project was retrofit in 2010 with energy and water efficiency improvements including low-flow showerheads and faucets, dual flush toilets, ENERGY STAR® certified appliances, efficient lighting, closed-cell insulation, white roofing, solar hot water and low-e windows. As a result of the retrofit, the property achieved a 45% reduction in water consumption, a 23% drop in annual electricity use including a 50% savings in summer electricity consumption while increasing the in-unit amenities, obtaining LEED Platinum certification and increasing occupancy by 30% resulting in a significant increase to Net Operating Income.

Multi-family properties made sustainable gain a competitive advantage in marketing to young professionals and other target audiences who prefer to live in an environment that is healthy and energy-efficient which saves money on utilities.

HOTELS

In a 2014 study conducted by Cornel University, researchers compared the earnings of 93 LEED-certified hotels in the US to 514 non-certified competitors. The study included a mix of franchised, chain and independent facilities in urban and suburban markets with three-quarters of the properties having between 75 and 299 rooms.

The results show that green or sustainable hotels had increased both their Average Daily Rate (ADR) and revenue per available room (RevPAR) with LEED properties reporting an ADR that was $20.00 higher than the non-certified properties (prior to certification, they reported an ADR premium of $169 vs. $160).

The researchers noted that these premiums were realized in price-competitive markets and that the amount of the premium was unexpected. From the results, they concluded that Eco-minded travelers were willing to pay a modest premium to stay at a verified green facility.

Further, the savings realized in electricity and water usage as well as reductions in waste disposal fees and costs as well as reduced maintenance costs go straight to the bottom line resulting in increased Net Operating Income. Here are some examples:

  • The Hampton Inn & Suites, a 94-room facility in Bakersfield, had REC Solar install carport-mounted solar panels which is offsetting 44% of the electricity costs, or up to $8,800/month – adding over $100,000 to the property’s bottom-line.
  • The 80-room Chatwall Hotel in New York completed an LED lighting retrofit project mid-year 2014 which will result in a first year savings of almost $125,000. The cost: just about $1.00 per LED light after rebates.

According to Flex Your Power and ENERGY STAR® statistics, the hospitality industry spends approximately $4 billion on energy annually with electricity, including the HVAC system, accounting for 60% to 70% of utility costs. In fact, excluding labor, energy is typically the largest expense that hoteliers encounter and the fastest growing operating expense in the industry (www.cpr-energy.com). The EPA has concluded that even a 10% improvement in energy efficiency is comparable to realizing a $0.62 and $1.35 increase in ADR for limited service and full service hotels, respectively.

Many studies show that hotels do not realize the full benefit of many energy efficiency measures as guests feel no obligation to employ sustainable practices and wastes the opportunity for savings afforded by the hotel’s energy efficiency measures; however, almost half realize savings in excess of 20% reflecting that many operators have found ways to enlist guest cooperation in saving electricity and water.

According to the US Energy Information Administration (EIA) 2012 Commercial Buildings Survey, the United States had approx. 87.4 billion square feet of floorspace in 5.6 million buildings that were larger than 1,000 sf which also excluded heavy industrial manufacturing facilities. Ninety percent of the buildings that will exist in2035 have already been built – and buildings consume 80% of energy used in cities worldwide and represents almost 20% of all energy consumption in the United States.

Source: US Department of Energy 2013 Renewable Energy Data Book, 1/22/2015

Source: US Department of Energy 2013 Renewable Energy Data Book, 1/22/2015

 

The evidence is clear – building and operating sustainably pays dividends – in improved NOI from cost savings and increased revenues. Attracting higher quality tenants, improving market perception and reducing risk indicates that going Green is becoming a key for maintaining the Class of a building – keys to improving long-term values through lower cap rates.

So, why aren’t more building owners and managers going green? We will seek to discern this matter in our next Sustainable Benefits.

Ugly Duckling to Become LEED Certified Building

2/4/2015

Julie

By Julie Lundin, Founder,
Director of LEED Process Management for Emerald Skyline Corporation

 

Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. This distinctive commercial building will include many sustainable features with the intent to obtain LEED certification from the USGBC.

Existing-Building

Existing Building

Proposed-Building-11-x-17-Perspective-

Proposed LEED Certified Building

We are in the process of renovating a 1,950 square foot warehouse located in Boca Raton, FL.  The building was previously used for a towing company so the property is currently a brownfield which will require that we remediate the contamination. This building is a major renovation/new construction project. We will be demolishing the existing interior space and adding a second floor and green terrace.  Our building renovations will include many sustainable features with the intent to obtain LEED certification.  Here are just a few of our intended design elements:

  • A tank used for rainfall and condensate collection to flush toilets and irrigate native Florida landscaping
  • A green terrace
  • A metal reflective roof
  • Use of low-VOC paints, sealants and adhesives for building improvements
  • Occupancy sensors and photos sensors that monitor daylight and reduce energy needs
  • LED or CFL Lighting
  • Pervious Paver Parking Areas
  • Low Flow Toilets and Faucets
  • Daylight Harvesting to lower Lighting Costs
  • Impact Windows

LEED Certification provides third-party validation that our building was designed and built to improve energy savings, water efficiency, carbon dioxide emissions, resource conservation and indoor environmental quality.

We look forward to showcasing the progress of our much anticipated sustainable renovations.

 

10 sustainable innovations: from solar-powered suitcases to floating classrooms

Laura Storm, the guardian, Wednesday 29 October 2014 03.00 EDT

View the original article here

The 2014 Sustainia Awards, chaired by Arnold Schwarzenegger, attracted more than 900 submissions for projects and technologies representing 10 different sectors from food, fashion and, city development to transportation and healthcare. Collectively, these projects are deployed in more than 84 countries.

The runners up for the award are showcased here and the winner will be announced in Copenhagen on Thursday 30 October. The ceremony will celebrate these innovations ahead of the release of the Intergovernmental Panel on Climate Change’s (IPCC) anticipated report on climate change, due to be finalised 31 October.

  1. Food finalist: Netafim (Israel) – gravity-powered irrigation

Netafim offers low-tech irrigation. Photograph: Netafim

Netafim is behind a low-tech irrigation system for smallholder farmers in developing countries which increases and secures yields while saving water and cutting costs. It drips precise quantities of water and nutrients right at the root zone of crops while an elevated tank distributes the water using gravity.

This minimises the need for electricity and investments in infrastructure. The UN estimates that 500 million smallholder farmers provide over 80% of the food consumed in the developing world. Irrigation systems are vital to sustain agriculture as it addresses water scarcity and soil erosion. The solution is commercially viable with a payback-time of about a year, making it fit for microfinance projects.

  1. Transportation finalist: 8D technologies (Canada) – bike sharing app

Spotcycle bike-sharing app. Photograph: 8D Technologies

As a mode of transport, the bicycle is one of the lowest emitter of greenhouse gases – even with the CO2 emissions of the food you need to power a bike. This helps explain why bike-sharing systems are being adopted increasingly by cities. The Spotcycle app from 8D technologies aims to make bike-sharing more convenient and smartphone-friendly. The app locates nearby bike stations and communicates availability, maps out bike paths and helps with navigation. The app is already in sync with cities in North America, Australia and Europe.

  1. Buildings finalist: Advantix (USA) – air-conditioners which use saltwater

Advantix’s saltwater air conditioning system. Photograph: Advantix

Air conditioners use about 5% of all electricity produced in the US. As a result, 100m tons of carbon dioxide are released each year. Advantix’s air conditioning system uses saltwater which means it needs 40% less energy than normal systems. Whereas air-conditioning systems normally chill the air to remove humidity and then reheat it in a highly energy-intensive process, Advantix’s air-conditioners funnel the air through non-toxic fluid saltwater instead. The process dehumidifies the air without the need for re-heating.

  1. Fashion finalist: I:CO (Switzerland) – textile recycling

An I:CI clothing drop-off recepticle. Photograph: I:CO

Clothes are often discarded after the first or second life cycle, and apparel accounts for up to 10% of a western consumer’s environmental impacts. Through an advanced take-back system, I:CO works to keep apparel, footwear and other textiles in a continuous closed-loop cycle. Used shoes and clothing are collected in stores and retail outlets, where customers are financially rewarded for depositing their used items. Once collected, the textiles are sorted according to more than 350 criteria for designation. Used clothes can be labeled suitable for: second-hand sale, recycling into fibres and paddings for new products, or upcycling.

 

 

  1. IT Finalist: Fairphone (Netherlands) – A smart-phone with social values

Fairphone conflict-free phones. Photograph: Fairphone

Through development, design and production, social enterprise Fairphone works to create positive social impact in the consumer electronics supply chain – from responsible mining, decent wages and working conditions to reuse and recycling.

Fairphone began by redesigning the processes behind the production, making phones that use conflict- free minerals and are assembled in a factory with a worker-controlled welfare fund. To date, Fairphone has sold nearly 50,000 phones from its first two production runs.


 

  1. Health finalist: We Care Solar (USA) – solar suitcases giving life

The Solar Suitcase provides lighting for medical professionals. Photograph: Solar suitcase

Preventable causes related to pregnancy and childbirth claim 800 lives daily and 99% of cases happen in developing countries. We Care Solar has created a sustainable solution. The Solar Suitcase provides solar electricity for medical lighting, mobile communication and essential medical devices for rural areas and humanitarian settings. This enables safe and timely obstetric care, which ultimately improves maternal and neonatal outcomes. Additionally, the innovation allows emergency surgeries to be conducted around-the-clock in rural hospitals. The Solar Suitcase has been introduced to more than 600 healthcare facilities in 20 countries.


 

  1. City Finalists: Wecyclers (Nigeria) – Pedal-powered recycling

Wecyclers collectors. Photograph: Wecyclers

In Lagos, Nigeria, Wecyclers is fuelling social and environmental change by enabling people in low-income communities to make money from unmanaged waste piling up in their streets.

It is a response to the local waste crisis; the municipal government collects only 40% of city garbage. The Wecyclers initiative has deployed a fleet of cargo bicycles to pick-up, collect and recycle garbage in low-income neighbourhoods. Families are encouraged to recycle their bottles, cans and plastics through an SMS-based programme. For every kilogram of material recycled, the family receives Wecyclers points on their cell phone. Families can then redeem points for goods such as cell phone minutes, basic food items or household goods. The initiative adds to the local economy by hiring personnel locally.

  1. Resource finalist: Newlight Tech (USA) – carbon-negative plastic

Carbon-negative plastic. Photograph: Newlight

With its novel technology that converts greenhouse gases into plastic material, AirCarbon has disrupted the market by replacing oil-based plastics with a sustainable product that is competitive in both price and performance. It is made from a process where carbon in the air is captured and used in manufacturing. AirCarbon uses pollutants as resources to make products otherwise made from oil. Products made from AirCarbon are carbon-negative even after calculating the emissions from the energy used in production. AirCarbon is currently used to make chairs, bags and cell phone cases.


 

  1. Education finalists: Shidhulai Swanirvar Sangstha (Bangladesh) – school boats combatting climate change

Floating school rooms. Photograph: Shidhulai Swanirvar Sangstha

More than one million Bangladeshis could be displaced by rising sea levels by 2050. One consequence is that children cannot attend school for long periods of time, making it harder for them to escape poverty. By building a fleet of solar-powered school boats, the Bangladeshi initiative Shidhulai Swanirvar Sangstha has secured year-round education in flood-prone regions of Bangladesh. Each floating school boat collects students from different riverside villages, ultimately docking at the last destination where on-board classes begin. Solar lighting makes the schedule flexible, which provides for additional educational programs in the evening. Shidhulai’s floating schools model has been replicated in Nigeria, Cambodia, Philippines, Vietnam and Zambia.

  1. Energy Finalists: Opower (USA) – personal energy-efficient expert

Utilities use Opower to share money-saving insights with custumers. Photograph: Opower

Through use of big data, Opower has given energy utilities a new way of engaging with customers in order to improve energy efficiency. The software solution combines cloud technology, big data and behavioural science to produce data analyses and personalised information on how to save energy. To motivate reductions in energy consumption, utilities use Opower to share money-saving insights with custumers. Opower can also show households their energy usage compared to neighbours; an effective method in motivating people to save energy. Opower has enabled savings of over 4TWh of energy, which is equivalent to $458m (£283.1) in bill savings.

Laura Storm is executive director at Sustainia

Solar Roadways ‘Could Power America’

May 27, 2014 by Leon Walker
View the original article here

An Idaho couple is using the Internet to fund their Solar Roadways project that would convert roads and highways into photovoltaic arrays, which they say could produce enough energy to power the entire US.

Scott and Julie Brusaw are using crowd-funding website Indiegogo in an attempt to raise $1 million to manufacture the product commercially, reports SingularityHub.

The product (artist’s impression pictured) previously received two rounds of funding from the Federal Highways Administration, buy that contract is set to expire in July.

Solar Roadways is a modular paving system of hexagonal solar panels that can withstand up to 250,000 pounds of pressure. These panels can be installed on roads, parking lots, driveways, sidewalks and bike paths, and the panels contain LEDs that road managers can light up to display lane lines and other road features that would traditionally be painted.
The surface of the panels, which are about the size of a car tire, is covered with hexagonal bumps that SingularityHub reports offer better traction than asphalt.

According to the crowd-funding website, panels pay for themselves primarily through the generation of electricity, which can power homes and businesses connected via driveways and parking lots. A nationwide system could produce more renewable energy than a country uses as a whole, the website says.

The roadways also have the ability to treat stormwater. Currently, over half of the pollution in US waterways comes from stormwater, according to Solar Roadways. The company has created stormwater treatment and storage areas in the pipelines used for housing cable.

Earlier this month, the Energy Department announced plans to use crowdsourcing in an attempt to spur innovation in the US solar marketplace.