water efficiency

The Price of Water is Rising: Time to start conserving to improve the bottom-line

PJ Pictureby Paul L. Jones, CPA, LEED Green Associate
Emerald Skyline CorporationPRICE of H2O

America’s water treatment and supply networks were built in the decade following World War II – 60 to 70 years ago. The results of those investments fueled a generation of widespread economic growth, prosperity and improvement in public health. However, the thousands of miles of distribution pipes beneath city streets, the lengthy water transport and treatment infrastructure are now cracked and brittle. The bill to repair and renew America’s long-neglected water systems are now coming due – and it will not be cheap.

Distribution pipes, which run for thousands of miles beneath a single city, have aged beyond their useful life and crack open daily. Some assessments estimate the national cost of repairing and replacing old pipes at more than US 1 Trillion over the next 20 years. In addition, new treatment technologies are need to meet the Safe Drinking Water Act and Clean Water Act requirements, and municipal water companies must continue to pay on their debts.

Add to the needed infrastructure costs, the impact of droughts and sea level rise which are affecting the three most populous states in the country (California, Texas and Florida) and water managers are seeking ways to reduce consumption – with price increases as one way to encourage conservation. The EPA has identified at least 36 states that have experienced, or can anticipate, some type of local, regional or statewide water shortage which will have a significant impact on both consumers and commercial facilities.

According to an annual pricing survey by Circle of Blue, the price of water rose six percent in 30 major US cities last year and it has risen 41% since 2010. Brett Walton, Circle of Blue, 4/22/2015

“In Chicago and neighboring communities that depend on the City for their water supply, a 25% rate increase took effect on 1/1/2012. The rate went up again in 2013 by 15%, and will increase again by 15% in 2014. That’s a 55% increase over a 3-year period. Even though American municipalities have traditionally underpriced water, a 55% increase in such a short amount of time is an indication that a serious problem exists – with no resolution in sight.” Klaus Reichardt, Environmental Leader, 10/14/2013

Further, more than 40 US cities are required to make massive investments in wastewater treatment capacity which are driving sewer rate increases as Federal grants that funded the current generation of sewage treatment facilities are no longer available so municipal utility companies must finance these projects on their own. In other words, they will be increasing sewer fees in order to keep our water clean.

“We expect water rates to continue to grow above inflation for some time. We don’t see an end in sight.” Andrew Ward, director of US Public Finance, Fitch Ratings.

It is clear that the cost of water and wastewater services are going to continue to increase at rates well above the consumer price index.

Commercial and institutional buildings use a large portion of municipally-supplied water in the United States. In fact, the EPA estimates that facilities such as schools, hotels, retail stores, office buildings and hospitals account for up to 17% of publicly-supplied and 18% of energy use. The three largest uses of water in office buildings are restrooms, heating and cooling, and landscaping.

END USESAccordingly, implementing water-efficiency measures, while resulting in immediate savings will also serve to reduce the financial impact of future rate increases – a hedge against inflation, if you will. According to the EPA, which has established Water Sense at Work: Best Management Practices for Commercial and Institutional Facilities, “the benefits of implementing water-efficiency measures, in and around office buildings can include reducing operating expenses as well as meeting sustainability goals. In addition to water savings, facilities will see a decrease in energy costs because of the significant amount of energy associated with heating water.

NOTE: Water efficiency refers to long-term reduction in water consumption that is not in response to any current water shortages. Water-efficient systems enable a facility to meet users’ needs while using less water than conventional equivalents.

Water consumption in commercial and institutional buildings is dependent on many factors: The age of the building, the local climate, the use of the facility, the existence of a kitchen facility or restaurant amenity and the type and age of the HVAC system. However, in virtually all venues, the restrooms are the primary consumer of water. Accordingly, the best place for building owners and managers to start is the restroom.

Before introducing some water conservation strategies, the greatest impediment to achieving meaningful water savings in office buildings is the common disconnect between the accountant who pays the bills, the building owner, the tenants, the building manager or engineer and the various third-party contractors that maintain the facility and equipment. In multi-use or multi-tenanted properties, water saving potential is frequently great, but successful implementation of changes always requires a cooperative effort from all of the stakeholders.

Like an energy audit that identifies the main users of energy and benchmarks use, the best way to identify water conservation measures is to establish a water savings plan that benchmarks the ways water is consumed and prioritize them. Water conservation will vary in a commercial setting depending on the building type and use. While hospitals and office buildings require a large water volume for mechanical systems, hotels and restaurants require high usage in laundry and food service applications, respectively.

Determining the applications that have the greatest water consumption is critical to prioritize the overall goals and budget. One way to do this is by installing sub-meters in various facility locations (such as restrooms, cafeteria and food service areas, different floors or blocks of floors, etc.) and then monitoring water consumption in each area. This can provide insight into where water is being used and can also point out inconsistencies in water consumption—information that can sometimes result in significant savings.

For instance, a facility might find that one block of floors uses far less water than another block. Is this because there are fewer people on those floors? Or are there plumbing leaks or older fixtures in the block using more water? Tracking water use allows building engineers to move quickly to identify problem areas within a building’s water systems.

Once the systems and their water usage have been determined, a water savings plan can be developed. A water savings plan will inventory the systems in-place, identify water-efficient alternatives and estimates of the costs and benefits of each component of the plan. The benefits of water efficiency efforts can be measured by calculating the difference between what the building owners/managers previously spent on water and related operating costs and what they spend after water efficiency programs are implemented. The return on investment of new equipment, fixtures, and other water-related items can also be calculated over the lifetime of a water efficiency project, and includes such things as reduced maintenance, water, sewer, and related energy costs.

Typical Water Efficiency Plan Components

Below is a quick summary of how a typical commercial facility can use water more efficiently:

Toilets. Replace older toilets with fixtures that meet or exceed Uniform Plumbing Code (UPC) and International Plumbing Code (IPC) requirements: 1.6 gallons of water per flush. Some newer toilets, including high-efficiency and dual-flush models, use even less water than that. Facility System Solutions, in a 7/14/2014 article entitled “Mandated high-efficiency toilets pay off” reports that since being required by the Energy Policy Act of 1992 “low flow toilets have saved enough water to fulfill the needs of Los Angeles, Chicago and New York for two decades.” Further water reductions are achieved through dual-flush or high-efficiency EPA WaterSense-labeled toilets.

Faucets. Replace existing faucets or install restrictive aerators to reduce water use from approximately 2.2 gallons per minute to 0.5 gallons per minute.

Urinals. Again, replace older fixtures with newer models that use less water (one gallon of water per flush or less). However, facilities can achieve far greater savings by installing waterless urinal systems (unfortunately, many building codes do not allow these fixtures).  Further, according to a study by the Rand Corporation, waterless urinals often provide a significant savings due to their lower annual maintenance costs, in addition to the benefits incurred from reduced water use.

Alternative water sources. Some facilities, and even some legal jurisdictions, have installed or are planning to install “greywater” distribution systems. Grey water is tap water soiled by use in washing machines, tubs, showers, and bathroom sinks that is not sanitary, but it’s also not toxic and generally disease-free. Grey water reclamation is the process that capitalizes on the water’s potential to be reused instead of simply piping it into a sewage system. While this water is considered non-potable (that is, not for human consumption), it can usually be used for toilets and traditional urinals, as well as for plant/landscape irrigation in some cases.

Another “alternative” water source is rainwater which can be harvested where capturing and storing rainwater is an easy and effective way to conserve water through a commercially viable payback period. Selecting a rainwater harvesting system is dependent on the collection area of the commercial site and the intensity of rainfall in the particular region of the country. Once the availability and demand are calculated, the system should be designed to meet the daily demand throughout the dry season.

Cooling tower water recovery is another “alternative” source of water. Cooling towers remove heat from a building’s air conditioning system by evaporating some of the condenser water. Since all cooling towers continually lose water through evaporation, drift, and blowdown, they can consume a significant percentage of a building’s total water usage. Towers that are in good condition, operated properly, and well maintained allow chillers to operate at peak efficiency. Some cooling towers can use recycled water like stormwater or grey water if the concentration ratio is maintained conservatively low. Similarly, blowdown water may be reused elsewhere on-site.

Leak Detection. In most cases, leaky restroom fixtures and pipes are only fixed when they become excessive or cause problems, such as water pooling on floors. Leak detection systems in critical or remote locations tied to a BAS to notify maintenance staff of water leaks ensure a quick response before building walls, ceilings, and equipment are permanently damaged. A formal leak detection program—in which building engineers regularly check all fixtures and major plumbing connections on a set schedule — can save literally thousands of gallons of water annually.

And, finally, educate the users. Water conservation is not only about innovation and good design practices, but also about building an understanding among water consumers to work together to achieve a greener and more energy-efficient environment. It is important to educate users about water scarcity issues and the impact of water conservation practices through signage and awareness campaigns at the point of use.

Conclusion

Usually overshadowed by high-efficiency HVAC systems or LED lighting retrofits in commercial building modernization and sustainability programs, water is increasingly becoming a scarce commodity and implementing a water conservation plan may just be the low hanging fruit of sustainable benefits. From the invention of a water-leak detection system to implementing sustainable retrofits, the Emerald Skyline team can provide you with the tools and guidance you need to save money by saving water.

Vegetation is Not Solely for Landscape: The Benefits of a Green Roof

By Kendall Gillen, Biologist
Emerald Skyline Corporation

greenroofOn a hot summer day when it is 90º on the street, it can be twice as hot on the roof of most commercial buildings with a significant number of them made of black tar. Black roofs result in higher utility bills due to the higher HVAC costs. An alternative that is increasingly available is a “green” roof.

Further, green roofs can provide useable outdoor patio spaces which, according to a an article entitled “10 Most Wanted Office Amenities” in the 9/3/2015 National Real Estate Investor, is the seventh most desired amenity based on a survey conducted by Colliers International Group Inc.

A green roof is built like traditional roofs except a final layer of vegetation and soil, or a growing medium, is planted over a waterproofing membrane. Additional layers, such as a root barrier and drainage and irrigation systems may also be included.

According to the GSA Green Roof Report green roofs consist of a waterproofing membrane, growing medium (soil), and vegetation (plants) overlying a traditional roof. Green roofs are used to achieve environmental benefits including reducing storm water runoff, energy use, and the heat island effect. They are sometimes referred to as vegetated roofs or eco-roofs.

The history of green roofs started in ancient Mesopotamia where rooftop plants were grown from the Ziggurat of Nanna to the fabled Hanging Gardens of Babylon, one of the Seven Wonders of the World. The most recognizable green roofs in America were installed on Rockefeller Center in New York City. They continue to flourish today (see photo). More recent examples are the Gap Headquarters in San Bruno, CA and the Ford Motor Co. headquarters in Dearborn, MI.

 

Green roofs can be either “Intensive” or “Extensive.” Intensive roofs have thick soil depths with elaborate plantings that include shrubs and trees that require heavy load-bearing roof structures and regular maintenance. Extensive green roofs are mush lighter with shallow soils with low-growing ground cover plants that are extremely sun and drought tolerant. Extensive green roofs can be installed over various roof decks and require periodic maintenance.

The environmental benefits of a well-designed and well-maintained Green Roof are summarized as follows:

  • Stormwater Management
    • Most urban and suburban areas contain large amounts of paved or constructed surfaces which prevent stormwater from being absorbed into the ground. The resulting excess runoff damages water quality by sweeping pollutants into water bodies. Green roofs can reduce the flow of stormwater from a roof and delay the flow rate.
  • Energy
    • Green roofs reduce building energy demand by cooling roofs and providing shade, thermal mass and insulation.
  • Biodiversity and Habitat
    • Green roofs provide new urban habitat for plants and animals, birds and insects, thereby increasing biodiversity
  • Urban Heat Islands
    • Cities are generally warmer than other areas, as concrete and asphalt absorb solar radiation, leading to increased energy consumption, heat-related illness, and air pollution. Green roofs can help reduce this effect
  • Roof Longevity
    • Green roofs are expected to last twice as long as conventional roofs
  • Aesthetics
    • Green roofs can add beauty and value to buildings

 

Green roofs can earn LEED points in several credit categories. The total points achieved will depend upon the size of the roof and the degree to which various features are incorporated into the overall building design. These include but are not limited to storm water design, reduced heat island effect, habitat provided for wildlife, reduced cooling load, and many others. Green roofs help to reclaim green space and promote biodiversity.

LEED is a rating system developed by the U.S. Green Building Council (USGBC). It provides a standard certification process with five key areas of human and environmental health. It provides a roadmap to measuring and documenting success for every building type and phase of building lifecycle. LEED certification is achieved by earning points for a variety of credits.

Of the five major LEED categories and subcategories, below are the ones that have potential to earn credit from a green roof

Sustainable Sites

  • Protect or restore habitat and maximize open space
    • Adding vegetation on a green roof reclaims green space that has been taken up by the built environment
  • Storm Water Design
    • Green roofs help to reduce excess storm water discharge through evapotranspiration, periods of longer infiltration, or capture and reuse.
    • Pollutants and other toxins are filtered out of storm water by the green roof
  • Heat Island Effect
    • Green roofs significantly reduce roof temperature, particularly in summer months
    • Vegetated roofs and high-reflectance roofs now have equal weight when calculating LEED compliance

Water Efficiency

  • Water-efficient landscaping
    • When vegetated with local or native vegetation, drought-tolerant plants require little irrigation
    • The growing medium or soil can act as a sponge to collect rainfall, feed the vegetation, evaporate and filter excess rainwater
    • Runoff may occur in heavy rains, which can be channeled to an on-site cistern for collection and reuse in irrigation, ground-level landscape, and non-potable water usage within the building

Energy and Atmosphere

  • Optimize Energy Performance
    • Green roofs can provide varying degrees of reduced energy costs based on climate zone, building type, site, exposure, atmospheric conditions, and moisture content of the roof soil

Materials and Resources

  • Recycled Content
    • If green roof materials contain recycled content such as compost or reclaimed mineral aggregate, they can count toward recycled content credits
  • Materials and products that contain multiple environmental attributes can have a synergistic effect on LEED points earned

Innovation in Design

  • Having a green roof on a building can contribute to increased workplace productivity
  • Green roofs can be used in various building types for
    • Meetings and relaxation, education, creating beautiful views, fostering better health, reduced healing time, and increased positive social interaction
  • Green roofs can be integrated with patios and outdoor kitchens which expands the building space
  • An advanced green roof may even grow herbs, vegetables, and other consumables for the property

 

Summary of the Benefits of a Green Roof

 In addition to reduced utility costs, the benefits of a green roof include: (a) reduction of water runoff; (b) reduced sewage system loads by assimilating large amounts of rainwater (3” to 5” of soil absorbs 75% of rain events that are on-half inch or less); (c) protects the underlying roof material by eliminating exposure to UV radiation and extreme temperature fluctuations resulting in a longer lasting roof system. Other benefits include reduction of air and noise pollution, creation of urban living environments for birds, provision of useable outdoor patio spaces, as previously mentioned, and enhancement of a property’s marketability (especially when multiple elevations are incorporated into a project resulting in views overlooking other rooftops).

  • For Building Owners
    • Increase roof life
    • Reduce HVAC costs
    • Government incentives
    • Storm water management tool
    • Contribute to earning LEED certification
    • Improve public relations
    • Transform roof into living space
  • For the Community
    • Reduce storm water runoff and pollutants
    • Reduce heat island effect
    • Improve air quality
    • Noise reduction
    • Lower energy demand
    • Provide green space
    • Improve aesthetics
  • For the Environment
    • Neutralize acid rain effect
    • Provide habitat for wildlife
    • Lowers the load on sewer capacity
    • Encourages biodiversity
    • Filters pollutants from the water supply

Up-front costs of an extensive roof in the US starts around $8 psf all-in. By comparison, a traditional roof starts at $1.25 with cool roof membranes starting at $1.50 psf. However, the additional installation costs are off-set by energy savings and the extended life of the roof and possible savings on the storm water infrastructure.   Finally, a property with a green roof will be more marketable to prospective tenants.

The benefits of a green roof are innumerable for building owners and occupants, the built environment, and the natural environment. Green roofs are a primary example of the advances in environmentally friendly systems that are available to enhance your commercial properties.

60% of Companies Say Water Will Affect Future Profitability

May 2, 2014
Original post on Environmental Leader

Most companies believe water challenges will significantly worsen in the next five years, according to a survey of major US corporations by the Pacific Institute and VOX Global.

However, the majority of companies surveyed do not appear to be planning to scale up their water risk management practices — about 70 percent of responding companies said their current level of investment in water management is sufficient.

In Bridging Concern with Action: Are US Companies Prepared for Looming Water Challenges?, the Pacific Institute and VOX Global surveyed senior officials who have direct responsibility for water issues from more than 50 companies including AT&T, Cummins, The Hershey Company, MillerCoors, and Union Pacific Railroad.

Nearly 60 percent of responding companies indicated that water is poised to negatively affect business growth and profitability within five years, while more than 80 percent said it will affect their decision on where to locate facilities. This is an increase from only five years ago, when water issues affected business growth and profitability for less than 20 percent of responding companies.

Some companies find that relatively small investments can produce a significant return on investment in mitigating water risks, the report says. According to John Schulz, assistant vice president, sustainability operations, AT&T: “Relatively small capital investments can bring about nearly 10 times the amount of savings in annual water and energy costs.”
In a study published last year, the Pacific Institute said investing in water efficiency and re-use projects will address growing problems associated with drought, flooding and contamination, and create thousands of jobs in a wide range of professions by 2020.