electric vehicle

U.S. Electric Vehicle Market Poised for Record Sales in 2021, According to Edmunds

Experts say 2021 could be a pivotal year for EV adoption thanks to greater selection of EV offerings, rising consumer interest
NEWS PROVIDED BY EDMONDS
View the original article here

SANTA MONICA, Calif., Feb. 2, 2021 /PRNewswire/ — Electric vehicle sales are poised to hit their highest level on record in 2021, according to the car shopping experts at Edmunds. Edmunds data shows that EV sales made up 1.9% of retail sales in the United States in 2020; Edmunds analysts expect this number to grow to 2.5% this year.

“After years of speculation and empty promises, 2021 is actually shaping up to be a pivotal year for growth in the EV sector,” said Jessica Caldwell, Edmunds’ executive director of insights. “We’re not only about to see a massive leap in the number of EVs available in the market; we’re also going to see a more diverse lineup of electric vehicles that better reflect current consumer preferences. And given that the new presidential administration has pledged its support for electrification, the U.S. is likely to see incentive programs targeted at fostering the growth of this technology further.”

“2021 is actually shaping up to be a pivotal year for growth in the EV sector” – Jessica Caldwell, analyst, Edmunds

Edmunds analysts anticipate that 30 EVs from 21 brands will become available for sale this year, compared to 17 vehicles from 12 brands in 2020. Notably, this will be the first year that these offerings represent all three major vehicle categories: Consumers will have the choice among 11 cars, 13 SUVs and six trucks in 2021, whereas only 10 cars and seven SUVs were available last year. For the full list of EVs expected to come to market in 2021, please see the table below.

This diverse spread of EV offerings should help encourage stronger loyalty among EV owners, which has dwindled over the years as shoppers have gravitated toward larger vehicles. According to Edmunds data, 71% of EV owners who didn’t buy another EV traded in their vehicle for a truck or SUV in 2020, compared to 60% in 2019 and 34% in 2015.

“Americans have a love affair with trucks and SUVs, to the detriment of EVs, which have until recently been mostly passenger cars,” said Caldwell. “Automakers should have a much better shot of recapturing some of the EV buyers who they’ve lost now that they can offer larger, more utilitarian electric vehicles.”

Edmunds analysts note that this infusion of fresh new products comes at a time where the market is also seeing a positive shift in consumer interest in EVs. According to Google Trends data, consumer searches for electric trucks and SUVs have recently hit a high point after trending upward for years.

“Besides affordability, one of the biggest barriers to increased EV sales has simply been tepid consumer reception — it’s been tough for companies that aren’t Tesla to crack the code of how to get shoppers hyped up for these vehicles,” said Caldwell. “But in the past year we’ve seen automakers throw huge advertising dollars behind their EV launches in an attempt to drum up some buzz, and it’s promising that consumers seem to at least be more aware of the options out there.”

As more consumers look to EVs as a possibility for their next car purchase, Edmunds experts emphasize that shoppers should take extra time to consider their alternatives and do their research.

“Buying an EV is an entirely different beast than a traditional car purchase, so extra research and diligence are key,” said Ivan Drury, Edmunds’ senior manager of insights. “Range and weather conditions play a huge factor in determining whether certain EVs make sense for your everyday needs, and whether you own a home with a garage or rent an apartment could affect your charging situation. Federal and state tax incentives are at play with these purchases. And with a number of manufacturers following Tesla’s direct sale model, there might not be opportunities to take a test drive, or even to trade in your current vehicle, like you would at a traditional dealership.”

To help consumers, the Edmunds experts have put together a comprehensive analysis of the true cost of powering an EV, and they also maintain an authoritative EV rankings page that highlights the best electric vehicles currently in production.

Electric Vehicles Expected to be Available for Sale in 2021

Model YearMakeModelVehicle Category
2021AtlisXTlarge truck
2021Audie-tronluxury midsize SUV
2021Audie-tron Sportbackluxury midsize SUV
2021BMWi3luxury subcompact car
2021ChevroletBolt EVsubcompact car
2021FordMustang Mach-Emidsize SUV
2021HerculesAlphalarge truck
2021HondaClaritymidsize car
2021HyundaiIoniq Electriccompact car
2021HyundaiKona Electricsubcompact SUV
2021KiaNiro EVsubcompact SUV
2021Lordstown MotorsEndurancelarge truck
2021LucidAirluxury large car
2021Mercedes-BenzEQCluxury compact SUV
2021MiniHardtop 2 Doorsports car
2021NissanLeafcompact car
2021Polestar2luxury midsize car
2021PorscheTaycanluxury large car
2021RivianR1Sluxury large SUV
2021RivianR1Tmidsize truck
2021TeslaCybertrucklarge truck
2021TeslaModel 3luxury compact car
2021TeslaModel Sluxury large car
2021TeslaModel Xluxury large SUV
2021TeslaModel Yluxury compact SUV
2021VolvoXC40 Rechargeluxury subcompact SUV
2021VWID.4compact SUV
2022ChevroletBolt EUVcompact SUV
2022GMCHummer EV SUVlarge truck
2022NissanAriyacompact SUV


Are Electric Cars Truly Better for the Environment?

Looking at the whole life cycle of EVs, the verdict is clear.

Looking at the whole life cycle of EVs, the verdict is clear.
Written By: David M. Kuchta
View the original article here.

Are electric vehicles truly better than gas cars for the environment? Not in all facets or in all regions of the world, but overall, unquestionably, yes—and as time goes on, only more so.

While much clickbait has been written questioning the environmental superiority of EVs, the cumulative science confirms that in almost every part of the world, driving an EV produces fewer greenhouse gas emissions and other pollutants than a gas-powered car. The internal combustion engine is a mature technology that has seen only incremental changes for the past half-century. By contrast, electric vehicles are still an emerging technology witnessing continual improvements in efficiency and sustainability, while dramatic changes in how the world produces electricity will only make electric vehicles cleaner.

“We still have a long way to go, and we don’t have the luxury of waiting,” said David Reichmuth of the Union of Concern Scientists in a recent interview with Treehugger.1

The transportation sector generates 24% around the world and 29% of total greenhouse gases (GHG) emissions in the United States—the largest single contributor in the U.S.2 According to the EPA, the typical passenger vehicle emits about 4.6 metric tons of carbon dioxide per year at an average of 404 grams per mile.3 Beyond carbon emissions, road traffic from gas-powered vehicles generates fine particulate matter, volatile organic compounds, carbon monoxide, nitrogen oxides, and sulfur oxides, the adverse health effects of which—from asthma and heart disease to cancer and pregnancy disorders—have been well demonstrated and disproportionately impact low-income communities and communities of color.4 EVs can’t solve all those problems, but they can make our world a more livable place.

Life-Cycle Analysis

The key to comparing gas-powered vehicles with electric ones is life-cycle analysis, which accounts for the entire environmental impact of vehicles from the extraction of raw materials to the manufacturing of vehicles, the actual driving, the consumption of fuel, and their end-of-life disposal.

The most significant areas of difference are in the upstream processes (raw materials and manufacturing), during driving, and in fuel sources. Gas-powered vehicles are currently superior when it comes to resources and manufacturing. EVs are superior when it comes to driving, while the issue of fuel consumption depends on the source of the electricity that fuels EVs. Where the electricity supply is relatively clean, EVs provide a major benefit over gas-powered cars. Where the electricity is predominantly coal—the dirtiest of the fossil fuels—gas-powered cars are less polluting than electric vehicles.

But coal is less of a major source of electricity around the world, and the future favors EVs fueled by clean energy. In two comprehensive life-cycle studies published in 2020, the environmental superiority of gas-powered vehicles applied to no more than 5% of the world’s transport.5 In all other cases, the negative impacts of upstream processes and energy production were outweighed by the benefits of a lifetime of emissions-free driving.

In the United States, given the decreasing reliance on coal in the electricity grid, “driving the average EV is responsible for fewer global warming emissions than the average new gasoline car everywhere in the US,” according to Reichmuth’s recent life-cycle analysis for the Union of Concerned Scientists.

As Nikolas Hill, co-author of a major 2020 study for the European Commission, told the podcast How to Save a Planet: “It’s very clear from our findings, and actually a range of other studies in this area, electric vehicles, be they fully electric vehicles, petrol-electric, plug-in hybrids, fuel cell vehicles, are unquestionably better for our climate than conventional cars. There should be absolutely no doubt about that, looking from a full life-cycle analysis.”

Raw Materials and Manufacturing

Currently, creating an EV has a more negative environmental impact than producing a gas-powered vehicle. This is, in large part, a result of battery manufacturing, which requires the mining, transportation, and processing of raw materials, often extracted in unsustainable and polluting ways.6 Battery manufacturing also requires high energy intensity, which can lead to increased GHG emissions.7

In China, for example, the raw materials and manufacturing process of a single gasoline car produces 10.5 tonnes of carbon dioxide, while it takes 13 tonnes of CO2 to produce an electric vehicle.8 Equally, a recent Vancouver study of comparable electric and gas-powered cars found that the manufacture of an electric vehicle uses nearly twice as much energy as manufacturing a gas-powered vehicle.9

But the differences in manufacturing, including raw materials extraction, need to be placed in the context of the entire life cycle of the vehicles. The majority of a gas vehicle’s emissions come not in the manufacturing process but in the cumulative time the vehicle is on the road. By comparison, raw materials and manufacturing play a larger role in the total life-cycle emissions of electric vehicles.10

On average, roughly one-third of total emissions for EVs come from the production process, three times that of a gas vehicle.11 However, in countries like France, which rely on low-carbon energy sources for their electricity production, the manufacturing process can constitute 75% to nearly 100% of a vehicle’s life-cycle GHG emissions.12 Once the vehicle is produced, in many countries emissions drop precipitously.

So while EV manufacturing produces higher emissions than the production of a gas-powered car does, a lifetime of low- to zero-emissions driving leads EVs to have greater environmental benefits. While, as we saw, manufacturing emissions are higher in China for EVs than for gas-powered cars, over the lifetime of the vehicles, EV emissions in China are 18% lower than fossil-fueled cars.13 Likewise, the Vancouver study cited above found that over their lifetimes, electric vehicles emit roughly half the greenhouse gases of comparable gasoline cars.14 And the benefits of EV driving come quickly after manufacturing: according to one study, “an electric vehicle’s higher emissions during the manufacturing stage are paid off after only two years.”15

Driving

The longer an EV is on the road, the less its manufacturing impact makes a difference. Driving conditions and driving behavior, however, do play a role in vehicle emissions. Auxiliary energy consumption (that is, energy not used to propel the car forward or backward, such as heating and cooling) contributes roughly one-third of vehicle emissions in any type of vehicle.16 Heating in a gas-powered car is provided by waste engine heat, while cabin heat in an EV needs to be generated using energy from the battery, increasing its environmental impact.17

Driving behavior and patterns, though less quantifiable, also matter. For example, EVs are far more efficient than gas-powered vehicles in city traffic, where an internal combustion engine continues to burn fuel while idling, while in the same situation the electric motor truly is idle. This is why EPA mileage estimates are higher for EVs in city driving than on highways, while the reverse is true for gasoline cars. More research needs to be done beyond specific case studies on the different driving behavior and patterns between drivers of EVs compared to gas-powered vehicles.18

Traffic Pollution

While most studies of the benefits of electric vehicles are understandably related to greenhouse gas emissions, the wider environmental impacts of non-exhaust emissions due to traffic are also a consideration in the life-cycle analysis.

The negative health consequences of particulate matter (PM) from road traffic are well-documented.19 Road traffic generates PM from resuspension of road dust back into the air, and from the wear-and-tear of tires and brake pads, with resuspension representing some 60% of all non-exhaust emissions.20 Due to the weight of the battery, electric vehicles are on average 17% to 24% heavier than comparable gas-powered ones, leading to higher particulate matter emissions from re-suspension and tire wear.21

Braking comparisons, however, favor EVs. Fine particles from braking are the source of approximately 20% of traffic-related PM 2.5 pollution.22 Gas-powered vehicles rely on the friction from disc brakes for deceleration and stopping, while regenerative braking allows EV drivers to use the kinetic force of the motor to slow the vehicle down. By reducing the use of disc brakes, particularly in stop-and-go traffic, regenerative braking can reduce brake wear by 50% and 95% (depending on the study) compared to gas-powered vehicles.23 Overall, studies show that the comparatively greater non-exhaust emissions from EVs due to weight are roughly equal to the comparatively lower particulate emissions from regenerative braking.24

Fueling

Beyond manufacturing, differences in fuel and its consumption are “one of the main drivers for life-cycle environmental impacts of EVs.”25 Some of that impact is determined by the fuel efficiency of the vehicle itself. An electric vehicle on average converts 77% of the electricity stored in its battery toward moving the car forward, while a gas-powered car converts from 12% to 30% of the energy stored in gasoline; much of the rest is wasted as heat.26

The efficiency of a battery in storing and discharging energy is also a factor. Both gas-powered cars and EVs lose fuel efficiency as they age. For gasoline cars, this means they burn more gasoline and emit more pollutants the longer they are on the road. An EV loses fuel efficiency when its battery becomes less efficient in the charging and discharging of energy, and thus uses more electricity. While a battery’s charge-discharge efficiency is 98% when new, it can drop to 80% efficiency in five to ten years, depending on environmental and driving conditions.27

Overall, however, the fuel efficiency of a gas-powered engine decreases more quickly than the efficiency of an electric motor, so the gap in fuel efficiency between EVs and gas-powered cars increases over time. A Consumer Reports study found that an owner of a five- to seven-year-old EV saves two to three times more in fuel costs than the owner of a new EV saves compared to similar gas-powered vehicles.28

Cleaning the Electricity Grid

Yet the extent of the benefits of an electric vehicle depends on factors beyond the vehicle’s control: the energy source of the electricity that fuels it. Because EVs run on standard grid electricity, their emissions level depends on how clean the electricity is going into their batteries. As the electricity grid gets cleaner, the cleanliness gap between EVs and ICE vehicles will grow only wider.

In China, for example, due to a large reduction of greenhouse gas emissions in the electricity sector, electric vehicles were projected to improve from 18% fewer GHG emissions than gasoline cars in 2015 to 36% fewer in 2020.13 In the United States, annual greenhouse gas emissions from an electric vehicle can range from 8.5 kg in Vermont and 2570.9 kg in Indiana, depending on the sources of electricity on the grid.29 The cleaner the grid, the cleaner the car.

On grids supplied exclusively by coal, electric vehicles can produce more GHG than gas-powered vehicles.30 A 2017 comparison of EVs and ICE vehicles in Denmark found BEVs “were not found to be effective in reducing environmental impacts,” in part because the Danish electricity grid consumes a large share of coal.31 By contrast, in Belgium, where a large share of the electricity mix comes from nuclear energy, EVs have lower life-cycle emissions than gas or diesel cars.32 In Europe as a whole, while the average EV “produces 50% less life-cycle greenhouse gases over the first 150,000 kilometers of driving,” that number can vary from 28% to 72%, depending on local electricity production.15

There can also be a trade-off between addressing climate change and addressing local air pollution. In parts of Pennsylvania where the electricity is supplied by a high share of coal-fired plants, electric vehicles may increase local air pollution even while they lower greenhouse gas emissions.33 While electric vehicles provide the highest co-benefits for combating both air pollution and climate change across the United States, in specific regions plug-in hybrid vehicles provide greater benefits than both gas-powered and electric vehicles.34

How Clean Is Your Grid?

The U.S. Department of Energy’s Beyond Tailpipe Emissions Calculator allows users to calculate the greenhouse emissions of an electric or hybrid vehicle based on the energy mix of the electricity grid in their area.

Charging Behavior

If EV drivers currently have little control over the energy mix of their electricity grid, their charging behavior does influence the environmental impact of their vehicles, especially in places where the fuel mix of electricity generation changes throughout the course of the day.35

Portugal, for example, has a high share (55%) of renewable power during peak hours, but increases its reliance on coal (up to 84%) during off-peak hours, when most EV owners charge their vehicles, resulting in higher greenhouse gas emissions.”36 In countries with a higher reliance on solar energy, such as Germany, midday charging has the greatest environmental benefit, whereas charging during hours of peak electricity demand (usually in the early evening) draws energy from a grid that relies more heavily on fossil fuels.30

Modifying EV charging behavior means “we can use EVs to benefit the grid,” as David Reichmuth told Treehugger. “EVs can be part of a smarter grid,” where EV owners can work with utilities so that their vehicles are charged when demand on the grid is low and the sources of electricity are clean. With pilot programs already underway, he said, “we’ll soon see the flexibility inherent in EV charging being used to enable a cleaner grid.”

In the build-out of electric vehicle charging stations, the success of efforts to increase the environmental benefit of EVs will also rely on charging stations that use clean or low-carbon energy sources. High-speed DC charging can put demands on the electricity grid, especially during hours of peak electricity demand. This can require utilities to rely more heavily on natural gas “peaker” plants.

Reichmuth noted that many charging stations with DC Fast Charging are installing battery storage to cut their utility costs and also reduce reliance on high-carbon power plants. Charging their batteries with solar-generated electricity and discharging them during peak demand hours allows charging stations to support EV adoption at the same time that they promote solar energy even when the sun isn’t shining.37

End of Life

What happens to electric vehicles when they’ve reached their end of life? As with gas-powered vehicles, scrap yards can recycle or re-sell the metals, electronic waste, tires, and other elements of an electric vehicle. The main difference, of course, is the battery. In gas-powered vehicles, over 98% of the materials by mass in lead-acid batteries are successfully recycled.38 EV battery recycling is still in its infancy since most electric vehicles have only been on the road for fewer than five years. When those vehicles do reach their end of life, there could be some 200,00 metric tons of lithium-ion batteries that need to be disposed. A successful battery recycling program needs to be developed to avoid decreasing the relative benefits of EVs.39

It Only Gets Better

Periods in the life cycle of an electric vehicle can be more environmentally harmful than in similar periods of a gas-powered car, and in areas where the electricity supply is dominated by coal, EVs produce more air pollution and greenhouse gases than gas-powered cars. But those areas are far outweighed by the overall benefits of EV—and the benefits can only improve as EV manufacturing evolves and as electricity grids get cleaner.

Were half of the cars on the road electric, global carbon emissions could be reduced by as much as 1.5 gigatons—equivalent to the current admissions of Russia.40 By 2050, electrification of the transport sector can reduce carbon dioxide emissions by 93%, nitrogen oxide emissions by 96%, and sulfur oxide emissions by 99%, compared to 2020 levels, and lead to the prevention of 90,000 premature deaths.41

The electric vehicle industry is young, yet it is already producing cars that are environmentally more beneficial than their gas-powered equivalents. As the industry matures, those benefits can only increase.

All the things carmakers say they’ll accomplish with their future electric vehicles between now and 2030

By Tim Levin
View the original article here.

2020 Nissan Leaf SV Plus 
  • Last year saw numerous developments in the electric-vehicle space, from manufacturers like Tesla, Ford, and Porsche. 
  • In addition to the developments, carmakers made claims about how fast they’ll be introducing new electric and hybrid vehicles over the next few years — partially in response to tightening efficiency and emissions standards. 
  • Some manufacturers have revised their earlier estimates and are planning to reach electrification targets sooner than expected. 

The electric-vehicle market made big gains in 2019, across multiple car manufacturers — and the industry has even bigger plans for the years to come. 

Rivian, for example, closed out the year with an extra $1.3 billion in investments. Tesla turned a profit, debuted the Cybertruck, delivered the first Model 3s built in its Shanghai plant, and announced a boosted range on its Model S and Model X. On the luxury end of the spectrum, the Audi E-Tron went up for sale, Porsche started production on the Taycan performance car, and Lamborghini announced its first hybrid supercar.

While plenty of tangible EV-related developments happened in 2019, it was also a year of promises made. As of late last year, auto manufacturers had pledged to spend a total of $225 billion developing new EVs in the near future, via The Wall Street Journal. 

Increasingly restrictive emissions and fuel-efficiency regulations around the globe — but not so much in the US — are compelling carmakers to roll out vehicles more able to fit within those restrictions. Accordingly, in recent years, manufacturers have advertised a whirlwind of plans and timelines for bringing more EVs to market. 

Scroll down to read more about what automakers see in their EV future. 

Toyota

The Lexus UX 300e. 
Toyota

Toyota — whose cars currently make up more than 80% of the global hybrid vehicle market, according to Reuters — announced plans to generate half of its sales from electrified vehicles by 2025, five years earlier than it previously estimated. Despite having its own battery-making operation already, Toyota will partner with Chinese battery manufacturers to meet demand. 

Volkswagen Group

Volkswagen’s all-electric ID.3. 
Volkswagen

Last year, Volkswagen said it will spend more than $30 billion developing EVs by 2023. The manufacturer also aims for EVs to make up 40% of its global fleet by 2030. Not to mention, Volkswagen plans to reach its target of 1 million electric cars produced by the end of 2023, two years ahead of its prior predictions.

General Motors

The design for Cadillac’s first fully electric vehicle. 
GM

In 2019, General Motors said Cadillac will be its lead brand when it comes to electric vehicles. Cadillac’s president said the majority of the brand’s models would be electric by 2030, and left open the possibility that the lineup would go entirely electric by then. He also confirmed that Cadillac would roll out a large Escalade-like electric SUV, which it expects to begin manufacturing in late 2023.

Ford

The Ford Mustang Mach-E. 
Paul Marotta/Getty Images

Last year, Ford unveiled the Mustang Mach-E, an electric crossover that gets its name from the company’s iconic sports car. But that wasn’t the only EV Ford had plans for. In 2018, Ford’s CEO said an increased investment in electric-car initiatives would result in a 2022 model lineup that includes 40 electric and electrified vehicles. 

In 2019, Ford Europe said it will offer an electrified option for all of its future nameplates and announced at the Detroit Auto Show that a fully electric F-150 would launch in the coming years. The Blue Oval also showed off a lineup of 17 hybrids and EVs — both family haulers and commercial vehicles — it plans to bring to the European market by 2024.

Volvo

The Volvo XC40 Recharge. 
Volvo

Last year, Volvo released its first electric vehicle, the XC40 Recharge, which it expects will go on sale in the US in the fourth quarter of 2020. The brand also doubled down on its pledge to generate 50% of its global sales from EVs by 2025 and promised that, by the same year, it will reduce the total carbon footprint of each vehicle manufactured by 40%.

Plus, Volvo said it will release a new EV every year for the next five years. This is all part of the Swedish company’s plan to become fully climate neutral by 2040.

Honda

The Honda E. Honda

Honda revealed its Honda E city car in 2019, and also said every model it sells in Europe will be at least partially electrified by 2022. That’s a big jump from Honda’s earlier projections of a full lineup of electrified cars by 2025. The fully electric Honda E and hybrid Jazz, known as the Fit to US consumers, will jumpstart the initiative.

BMW Group

The Mini Cooper SE. 
MINI

In 2017, BMW Group projected that electrified vehicles — a term that doesn’t necessarily equate to fully electric vehicles — would account for 15% to 25% of its sales by 2025.

In working toward that projection, BMW Group unveiled the electric Mini Cooper SE last year, targeting it toward “urban mobility.” In June, the Bavarian brand said it will offer 25 electrified vehicles by 2023, two years earlier than it had initially planned. One of those new models — an electric version of the 1 Series hatchback — may arrive as early as 2021.

BMW also projects a twofold increase in electrified vehicle sales by 2021, as compared with 2019, and a 30% growth in those sales year over year through 2025. 

Nissan

The Nissan Ariya Concept. 
Nissan

Nissan launched the Leaf Plus with a longer range last year, and plans to introduce eight new electric cars by 2022.

At last year’s Tokyo Motor Show, the brand unveiled the concept version of its new Ariya EV, and Car and Driver reported late last year that a production version could make it to the US by 2021. Nissan claims the high-performance crossover will travel 300 miles on a single charge and go from 0 to 60 mph in less than five seconds.

Fiat Chrysler Automobiles

The Jeep Renegade plug-in hybrid. 
Mark Matousek/Business Insider

In 2018, Fiat Chrysler announced it would invest $10.5 billion in electrification through 2022. By that year, FCA plans to offer at least 12 hybrid and all-electric powertrain options and launch more than 30 electrified nameplates. As part of that effort, the company announced a $4.5 billion investment in new and existing plants last year that would allow it to produce at least four plug-in hybrid Jeep models.

FCA began making good on that promise when it displayed plug-in hybrid versions of the Compass, Renegade, and Wrangler at the Consumer Electronics Show earlier this month. 

Daimler

The Mercedes-Benz EQC. 
Hollis Johnson/Business Insider

In 2017, Daimler, the parent company to Mercedes-Benz, unveiled plans to plunge more than $11 billion into developing its EQ series of electric cars, with the aim of introducing more than 10 EVs by 2022. The company also plans to offer at least one electric option in every Mercedes-Benz model series. Last year, Daimler confirmed that an all-electric G-Wagen is in the works. 

Amazon Invests In Hydrogen Fuel Cell Electric Vehicles

By: Tina Casey on Triple Pundit

Amazon Hydrogen
Retail giant Amazon made waves with its recent forays into the entertainment field. And now it looks like the sprawling enterprise is about to pull the rug out from under hydrogen fuel cell skeptics.

Last week the company signed a deal with fuel cell innovator Plug Power for a new generation of zero-emission, hydrogen-powered electric forklifts and other equipment at its fulfillment centers.

Warehouse operations aren’t the most exciting sector in the auto industry, but the new Amazon forklift deal could make a big difference for the future of fuel cell electric cars. That market has been slow to take off, but the Amazon announcement adds momentum to the trend, helping to keep investors and auto manufacturers interested in pushing the technology forward.

A big deal for hydrogen fuel cell vehicles

Fuel cell vehicles run on electricity, like the now-familiar battery electric vehicles. Both types of EV emit no air pollutants. The main difference is that fuel cells generate electricity on-the-go through a chemical reaction. Battery EVs run on stored electricity.

That difference looms large in warehouse operations, where excess fat shaved from time and space translates into big bottom-line savings.

Battery-powered forklifts require relatively long charging times, and extra storage space for battery charging. In contrast, fuel cell forklifts can be fueled up in a matter of minutes, like an ordinary gas-powered vehicle, and they don’t require a “battery room” or other excess storage.

Hydrogen fuel cell forklifts have already begun to establish a solid track record in the logistics sector, and it looks like Amazon didn’t take much convincing.

The recent deal enables the company to acquire more than 55 million common shares in Plug Power in connection with a $600 million commitment from Amazon to purchase goods and services from Plug Power.

This could be just the beginning…

Amazon and Plug Power plan on a relatively modest start for the new venture, with a total of $70 million in buys this year for fuel cell equipment at selected fulfillment centers.

What’s really interesting about the deal is the “and services” part of the agreement. Forklifts appear to be just the start of a wide-ranging collaboration between the two companies, leading to other applications.

Here’s Plug Power CEO Andy Marsh enthusing over the potentials:

“This agreement is a tremendous opportunity for Plug Power to further innovate and grow while helping to support the work Amazon does to pick, pack and ship customer orders. … Our hydrogen fuel cell technology, comprehensive service network, and commitment to providing cost-savings for customers has enabled Plug Power to become a trusted partner to many in the industry and we are excited to begin working with Amazon.”

To put this in perspective, consider that just a few years ago it was difficult to get investors interested in fuel cell technology. The hydrogen economy dream was hitting a harsh reality — namely that the technology was not quite ready for prime time. Growing competition from battery-powered EVs also helped to shove hydrogen fuel cells down the ladder.

TriplePundit’s RP Siegel interviewed Marsh about the fuel cell dilemma in 2012, and the CEO made these observations about Plug Power, forklifts and the future of fuel cell EVs:

“With limited capital, we had to be selective in our decisions about which markets to go after. … The one that really jumped out at us was replacing batteries in fork lift trucks with fuel cells. How big of a market could that be? Well, in the US there are over 1.5 million forklift trucks, and worldwide, the number is 6 million.

“We chose this market because it was a way to build a profitable business that would allow us to attract large customers in a relatively large market … as we continue to drive down our costs, we should be at parity with IC [internal combustion] engines in five to six years, at which point we’ll be ready to expand into other areas.”

With the new Amazon partnership, it looks like Plug Power is hitting that five- to six-year timeline for growing into other areas.

Fuel cell EVs hit the streets

Just a wild guess, but in a few years you could see Amazon introduce its own fuel cell EV for street use.

That may seem far-fetched, but consider that Google began dabbling in the related field of self-driving cars in 2015 and is now a burgeoning leader in the space. (That project has since been transferred to Google’s parent company, Alphabet.)

Apple is also inching into the self-driving car market.

Intel is another tech company putting feelers into the self-driving sector. Just last month it took a giant step with a $15.3 billion acquisition of the Israeli startup MobilEye.

Amazon will have to act fast if it wants to catch the train. Mainstream auto manufacturers are beginning to add fuel cell EVs to their rosters at a quickening pace.

Toyota was among the first to make a firm commitment to the field with its fuel cell Mirai. The company’s efforts include the all-important transition to sustainable hydrogen and support for growing the network of hydrogen fuel stations, along with a foray into the forklift sector.

Other companies introducing fuel cell EVs to the consumer market include GM and Honda.

So, who’s giving fuel cell EVs the stinkeye?

In response to the Amazon fuel cell forklift news, last week MIT Technology Review pumped out a brief article with this observation about the consumer market:

“Attempts to convince the public to embrace hydrogen-powered cars have flopped. While some automakers continue to push on with the vehicles, other are increasingly having second thoughts.”

Calling Debbie Downer!

On the brighter side, last December the journal IEEE Spectrum took an in-depth look at the potential for the fuel cell EV market to bust loose, penned by the director of the National Fuel Cell Research Center at the University of California, Irvine.

The article emphasized that both battery and fuel cell EVs will have a place in the zero-emission market of tomorrow, but fuel cells will give batteries a run for the money based on a number of advantages including range and refueling time.

The author, Scott Samuelson, also makes a good case that excess renewable energy can be used to manufacturing sustainable hydrogen for fuel cell vehicles.

That growing market could provide an important incentive for investors to accelerate the pace of renewable energy development.

February LEED Project Update

 

Julie

 

By Julie Lundin, Founder, LEED AP ID+C, NCIDQ, ASID
Director of Sustainable Interior Design for Emerald Skyline Corporation

 

 

Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. This building was formerly an auto garage that stood vacant for several years and was environmentally contaminated. Our renovation includes many sustainable features with the intent to obtain LEED certification from the USGBC.

LEED certified building boca raton floridaWe are getting close… to completing the build out of the interior of our project. I would like to share some of the design details and finishes that we have chosen. This building is an old auto garage so we are keeping the existing open floor plan of the main garage space with minimum interior walls being constructed.   The perimeter concrete walls will remain intact without the addition of a drywall finish. The walls have so much character; the imperfections on the concrete block that have accumulated over the years are too interesting to cover up. The walls will be painted and some of the imperfections enhanced with paint layering. The 3 overhead garage door openings have been replaced with impact windows and doors with the center opening now serving as the main entrance.   Since it is important to our design concept to retain as many of the auto garage components as possible we designed this elevation to keep the overhead doors in place behind the new glazing. Manual lift mechanisms have been installed to enable us to raise and lower the garage doors. We are using the roll down doors as large metal shades for both privacy and sun control since the openings are located on the south façade. Broad horizontal stripes will be painted on the interior of the overhead doors to add a bold touch to the space when lowered.

Due to the absence of interior walls we will have an open workspace. Open work spaces can offer important benefits. Our windows and doors are south facing which will allow natural light to filter through the entire office and provide views of the outside. Studies have shown that natural light and views of the outdoors provide occupants attributes of increased patience, productivity and physical health. Open work spaces can be beautiful but do lend themselves to noise issues that need to be addressed in order to function well. Since we are not constructing interior walls, the spaces and their usage will be delineated by furniture and lighting placement. “Floating” furniture and fixtures will create visual separation as well as help control sound transference. The existing concrete floor will remain but be polished and stained. Hard surfaces do a poor job of absorbing sound, so we will be using large area rugs to help minimize noise. The ceiling height is 12 ft. in this portion of the building and is a great architectural element, yet can also contribute to unwanted noise. Once we are in the building and experience the day to day noise levels, additional soft acoustical materials may need to be added. In addition, plants provide sound absorbing capabilities that can work just as effectively in an indoor environment as an outdoor setting as well as provide health benefits, including improving oxygen levels. We may even include a living wall!

Since this is a LEED registered project the specifications for the interior build out as well as exterior choices will contribute to the certification of the building. There are many products available that are not only attractive but have the attributes needed to create a beautiful and sustainable space. Some of our selections include:

  • Low flow toilets and faucets
  • Energy Star Appliances
  • Low VOC paints and finishes
  • Bamboo wood flooring
  • LED Lighting
  • Reuse of demolition materials
  • ChargePoint Electric Vehicle Charging Station
  • Water Collection Cistern
  • HVAC Condensation Drip Lines for exterior vegetation

Two of my favorite sustainable design choices are on the exterior of the building. A recycled glass mosaic of an abstract nautilus shell was created to adorn the south elevation. Metal “green screens” will be attached to the front apex of the building to create a green wall that will add beauty and provide shading to the stucco exterior.

There is still much to be accomplished but we look forward to being in our new space and sharing the completed details and photos with you.

 

The rapid growth of electric cars worldwide, in 4 charts

The article below puts a spotlight on the swift growth of electric vehicle use worldwide. So speedy in fact, EV use has tripled since 2013. This is one of the few areas that the world’s nations are on track to keep climate change below 2 degrees celsius. Let this be a reason to keep up the good work with EV deployment, and highlight the other energy initiatives that could use improvement. With every electric vehicle that hits the road, the demand for places to charge up increases. What if I told you there was a way to not only install a charging station, but an independently owned business that can set its own pricing, access settings, and much more? Keep reading to find out…


The rapid growth of electric cars worldwide, in 4 charts

electric vehicle parking

An increasingly common sight

Written by Brad Plumer on June 6, 2016

One million down, another billion or so to go.

In a new report, the International Energy Agency estimates that 1.26 million electric cars hit the world’s roads in 2015, passing a nifty (if symbolic) milestone. Here’s a chart showing the very rapid growth of both battery electric vehicles (BEVs) and plug-in hybrids (PHEV):

evolution global electric car stock

(IEA, Global EV Outlook 2016)BEV = battery electric vehicles; PHEV = plug-in hybrid vehicles, which typically have both an electric motor and a conventional engine.

The United States now has 400,000 electric vehicles on the road — a massive increase since 2010, though well short of Obama’s goal of 1 million by 2015. Meanwhile, China has become the world’s largest market, overtaking the US in annual sales last year.

Is 1 million a lot? It depends how you look at it. It’s jaw-dropping growth given that there were only a few hundred electric vehicles on the entire planet back in 2005. And the total number of electric vehicles worldwide has tripled just since 2013.

But to put this in perspective, there are more than 1 billion gasoline- and diesel-powered cars on the world’s roads — and demand will keep soaring in the decades ahead as China and India’s middle classes expand. So we have a long, long way to go before electric cars take over the world.

In order to avoid more than 2°C of global warming, the IEA calculates, we’d likely need to see about 150 million electric cars on the road by 2030 and 1 billion by 2050 as part of a broader climate strategy. The good news, the agency says, is that this ambitious electric vehicle target seems much more feasible than it did just a few years ago.

Two big reasons for the rapid growth of EVs: public subsidies and falling battery prices

For starters, more and more countries are enacting policies to build up charging infrastructure and incentivize vehicle purchases. The table below details some of those policies, which include everything from tax breaks to tailpipe emission standards (which favor cleaner electric cars) to HOV lane access:

Electric vehicle uptake

IEA, Global EV Outlook 2016

“Ambitious targets and policy support have lowered vehicle costs, extended vehicle range and reduced consumer barriers in a number of countries,” the report says.

As a result, electric vehicles now make up more than 1 percent of sales in China, France, Denmark, and Sweden. They make up 9.7 percent of sales in the Netherlands, and 23 percent of sales in Norway, which offers some of the most generous tax incentives around, worth about $13,500 per car.

The other huge driver here is falling battery costs, which have fallen by a factor of four since 2008. Since batteries make up around one-third of the price of electric vehicles, getting this number down even further is crucial for widespread adoption.

evolution battery energy density cost

IEA, Global EV Outlook 2016

The Department of Energy estimates that battery costs need to fall to $125 per kilowatt-hour by 2022 to achieve cost-competitiveness with conventional vehicles. The IEA says this “seems realistic” given current rates of technological improvement, and points out that manufacturers like Tesla and GM have set even more ambitious cost targets.

The amount of energy that batteries can hold (known as energy density) has also improved significantly. The IEA cites various reports that electric cars will soon be able to travel more than 180 miles on a single charge — also critical for boosting consumer adoption and alleviating “range anxiety.”

Meanwhile, electric cars get all the attention, but the IEA points out that the electrification of other modes of transport, including motorcycles and buses, is just as important. Particularly in countries where these vehicles are widespread:

The electrification of road transport modes other than cars, namely 2-wheelers, buses and freight delivery vehicles, is currently ongoing in a few localised areas. With an estimated stock exceeding 200 million units, China is the global leader in the electric 2-wheelers market and almost the only relevant player globally, primarily because of the restriction on the use of conventional 2- wheelers in several cities to reduce local pollution. China is also leading the global deployment of electric bus fleets, with more than 170 000 buses already circulating today.

To help solve climate change, electric cars need to do much, much more

Here’s one last chart from the IEA, showing what electric car deployment would have to look like to help meet the emissions-reduction promises put forth at the Paris climate talks last year (around 100 million electric cars by 2030). It also shows the even faster deployment that would be needed to keep global warming below 2 degrees Celsius (about 150 million):

deployment scenarios electric cars

IEA, Global EV Outlook 2016

We’re on track now, but it’s early. In fact, as the IEA points out elsewhere, electric vehicle deployment is basically the only area where the world’s nations are on track to hit the targets needed to stay below 2 degrees Celsius.

One final caveat: As David Biello recently explained at Scientific American, electric cars aren’t inherently greener than their gasoline-powered counterparts. If you use coal-fired power plants to charge all those electric cars, the climate benefits are minimal (or, worse, negative). The IEA is well aware of this, although it also notes that electric car deployment can help support the rollout of cleaner renewable energy, too:

The climate change-related benefits of EVs can be fully harvested under the condition that their use is coupled with a decarbonised grid, an additional challenge for countries that are largely dependent on fossil fuels for power generation. Investment in EV roll-out can support this transition, e.g. increasing the opportunities available to integrate variable renewable energy.

Cleaning up the grid is a sine qua non for electric cars to help ameliorate climate change, although this hardly seems like a deal breaker for the technology. Think of it this way: If we don’t clean up the world’s electric grid, we have little chance of stopping global warming either way. The two have to go hand in hand.

End article.


Following Emerald Skyline’s recently announced partnership with ChargePoint, we have realized more and more the importance of the growth of electric vehicle use worldwide. Equally important as these EVs are the charging stations and infrastructure needed to support them. This rapid growth necessitates installation of charging stations. The industry standard for functionality and aesthetics are ChargePoint stations which are independently owned businesses that set their own pricing, access settings and much more.

To find out more information about the installation of a ChargePoint Electric Vehicle Charging Station at your home, office building, shopping center, hotel or transportation hub and join the EV revolution for a greener tomorrow, please contact us at 305.424.8704 or info@emeraldskyline.com