Month: August 2022

How cities can fight climate change

Urban activities — think construction, transportation, heating, cooling and more — are major sources of greenhouse-gas emissions. Today, a growing number of cities are striving to slash their emission to net zero — here’s what they need to do.

By: Deepa Padmanaban
View the original article here

Global temperatures are on the rise — up by 1.1 degrees Celsius since the preindustrial era and expected to continue inching higher — with dire consequences for people and wildlife such as intense floods, cyclones and heat waves. To curb disaster, experts urge restricting temperature rise to 1.5 degrees, which would mean cutting greenhouse gas emissions, by 2050, to net zero — when the amount of greenhouse gases emitted into the atmosphere equals the amount that’s removed.

More than 800 cities around the world, from Mumbai to Denver, have pledged to halve their carbon emissions by 2030 and to reach net zero by 2050. These are crucial contributions, because cities are responsible for 71 percent to 76 percent of global carbon dioxide emissions due to buildings, transportation, heating, cooling and more. And the proportion of people living in cities is projected to increase, such that an estimated 68 percent of the world’s population will be city dwellers by 2050. 

“Urban areas play a vital role in climate change mitigation due to the long lifespans of buildings and transportation infrastructures,” write the authors of a 2021 article on net-zero cities in the Annual Review of Environment and Resources. Are cities built densely, or do they sprawl? Do citizens drive everywhere in private cars, or do they use efficient, green public transportation? How do they heat their homes or cook their food? Such factors profoundly affect a city’s carbon emissions, says review coauthor Anu Ramaswami, a professor of civil and environmental engineering and India studies at Princeton University.

Ramaswami has decades of experience in the area of urban infrastructure — buildings, transport, energy, water, waste management and green infrastructure — and has helped cities in the United States, China and India plan for urban sustainability. For cities to get to net zero, she tells Knowable, the changes must touch myriad aspects of city life. This conversation has been edited for length and clarity. 

Why are the efforts of cities important? What part do they play in emissions reductions?

Cities are where the majority of the population lives. Also, 90 percent of global GDP (gross domestic product) is generated in urban areas. All the essential infrastructure needed for a human settlement — energy, transport, water, shelter, food, construction materials, green and public spaces, waste management — come together in urban areas.

So there’s an opportunity to transform these systems. 

You can think about getting to net zero from a supply-side perspective — using renewable, or green, energy for power supply and transport — which is what I think dominates the conversation. But to get to net zero, you need to also shape the demand, or consumption, side: reduce the demand for energy. But we haven’t done enough research to understand what policies and urban designs help reduce demand in cities. Most national plans focus largely on the supply side.

You also need to devise ways to create carbon sinks: that is, remove carbon from the atmosphere to help offset the greenhouse gas emissions from burning fossil fuels.

These three — renewable energy supply, demand reduction through efficient urban design and lifestyle changes, and carbon sinks — are the broad strategies to get to net zero. 

How can a city tackle demand? 

Reducing demand for energy can be through efficiency — using less energy for the same services. This can be done through better land-use planning, and through behavior and lifestyle changes. 

Transportation is a great example. So much energy is spent in moving people, and most of that personal mobility happens in cities. But better urban planning can reduce vehicle travel substantially. Mitigating sprawl is one of the biggest ways to reduce demand for travel and thus reduce travel emissions. In India, for example, Ahmedabad has planned better to reduce urban sprawl, compared to Bangalore, where sprawl is huge. 

Well-designed, dynamic ride sharing, like the Uber and Lyft pools in the US, can reduce total vehicle miles by 20 or 30 percent, but you need the right policies to prevent empty vehicles from driving around and waiting to pick up people, which can actually increase travel. These are big reductions on the demand side. And then you add public transit and walkable neighborhoods.

Electrification of transportation — the supply side — is important. But if you only think about vehicle electrification, you’re missing the opportunity of efficiency. 

Your review talks about the need to move to electric heating and cooking. Why is that important? 

There’s a lot of emphasis on increasing efficiency of devices and systems to reduce these big sources of energy use, and thus emissions — heating, transport and cooking. But to get to net zero, you also have to change the way you provide heating, transport and cooking. And in most cities, heating and cooking involve the direct use of fossil fuels.

For example, house heating is a big thing in cold climates. Right now, we use natural gas or fuel oil for heating in the US, which is a problem because they are fossil fuels that release greenhouse gases when they are burned. With many electric utilities pledging to reduce the emissions form power generation to near-zero, cities could electrify heating so that the heating system is free of greenhouse gas emissions.

Cooking is another one. Some cities in the US, like New York City and others in California, have adopted policies that restrict natural gas infrastructure for cooking in new public buildings and neighborhood developments, thereby promoting electric cooking. Electrifying cooking enables it to be carbon-emissions-free if the source of the electricity is net zero-emitting.

Many strategies require behavior change from citizens and public and private sectors — such as moving from gasoline-powered vehicles to lower-emission vehicles and public transport. How can cities encourage such behaviors? 

Cities can offer free parking for electric vehicles. For venues that are very popular, they’ll offer electric vehicle charging, and parking right up front. But more than private vehicles, cities have leverage on public vehicles and taxi fleets. Many cities are focusing on changing their buses to electric. In Australia, Canberra is on track to convert their entire public transit fleet to electric buses. That makes people aware, because the lack of noise and lack of pollution is very noticeable, and beneficial.

The Indian government is also offering subsidies for electric scooters. And some cities across the world are allowing green taxis to go to the head of the line. Another incentive is subsidies: The US was offering tax credits for buying electric cars, for example, and some companies subsidize car-pooling, walking or transit. At Princeton, if I don’t drive to campus, I get some money back. 

The main thing is to reduce private motorized mobility, get buses to be electric and nudge people into active mobility — walking, biking — or public transit. 

How well are cities tackling the move to net zero? 

Cities are making plans in readiness. In New York City, as I mentioned, newly built public housing will have electric cooking and many cities in California have adopted similar policies for electric cooking.

In terms of mobility, California has among the world’s largest electric vehicle ownership. In India, Ola, a cab company similar to Uber, has made a pledge to electrify its fleet. The Indian government has set targets for electrifying its vehicle sector, but then cities have to think about where to put charging stations.

A lot of cities have been doing low carbon transitions, with mixed success. Low carbon means reducing carbon by 10 to 20 percent. Most of them focus entirely on efficiency and energy conservation and will rely on the grid decarbonizing, but that’s just not fast enough to get you to net zero by 2050. I showed in one of my papers that even in the best case, cities would reduce carbon emissions by about 1 percent per year. Which isn’t bad, but in 45 years, you get about a 45 percent reduction, and you need 80-plus percent to get to net zero. That means eliminating gas/fossil fuel use in mobility, heating and cooking, and creating construction materials that either do not emit carbon during manufacturing or might even absorb or store carbon.

That’s the systemic change that is going to contribute to getting to net zero, which we define in our Annual Review of Environment and Resources paper as at least 80 percent reduction. The remaining 20 percent could be saved through strategies to capture and store carbon dioxide from the air, such as through tree-planting, although the long-term persistence of the trees is highly uncertain.

Are there notable case studies of cities you could discuss? 

Denver has been covering the most sectors. Some cities cover only transportation and energy use in buildings, but Denver really quantified additional sectors. They even measured the energy that goes into creating construction materials, which is another thing the net zero community needs to think about. Net zero is not only about what goes on inside your city. It is also about the carbon embodied in materials that you bring into your city and what you export from your city. 

Denver was keeping track of how much cement was being used, how much carbon dioxide was needed to produce that cement, called embodied carbon; what emissions were coming from cars, trucks, SUVs and energy use in buildings. They measured all of this before they did any interventions.

The city has also done a great job of transitioning from low-carbon goals (for example, a 10 percent reduction in a five-year span) to deep decarbonization goals of reducing emissions by 80 percent by 2050. During their first phase of low-carbon planning back in 2010, they counted the impact of various actions in each of these sectors to reduce greenhouse gas emissions by 10 percent below 1990 baselines, through building efficiency measures, energy efficiency and promotion of transit, and were successful in meeting their early goals.

Denver is also a very good example of how to keep track of interventions and show that it met its goals. If the city did an energy efficiency campaign, it kept track of how many houses were reached, and what sort of mitigation happened as a result.

But they realized that they’re never going to get down to net zero because, while efficiency and conservation reduce gas use for heating and gasoline use for travel, it cannot get them to be zero. So in 2018, they decided that they’re now going to do more systemic changes to try to reduce emissions by 80 percent by 2050, and monitor them the same way. This includes systemic shifts to heating via electric heat pumps and shifting to electric cars as the electric grid also decarbonizes.

So it’s counting activities again: How many electric vehicles are there? How many heat pumps are you putting into the houses that can be driven by electricity rather than by burning gas? How many people adopt these measures? What’s the impact of adoption? 

What you’re saying is that this accounting before and after an intervention is put in place is very important. Is it very challenging for cities to do this kind of accounting? 

It’s like an institutional habit — like going to the doctor for a checkup every two years or something. Someone in the city has to be charged with doing the counting, and so many times, I think it just falls off the radar. That was what was nice about Denver — and we worked with them, gave them a spreadsheet to track all these activities. 

Though very few cities have done before and after, Denver is not the only one. There are 15 other cities showcased by ICLEI, an organization that works with cities to transition to green energy.

I have worked with ICLEI-USA to develop protocols on how to report and measure carbon emissions. One of the key questions is: What sectors are we tracking and decarbonizing? As I mentioned at the start, most cities agree with tackling energy use in transportation and building operations, and greenhouse emissions from waste management and wastewater. ICLEI has been a leader in developing accounting protocols, but cities and researchers are realizing that cities can do more to address construction materials — for example, influencing choice between cement and timber, which may even store carbon in cities over the long term.

I serve on ICLEI-USA’s advisory committee for updating city carbon emission measurement protocols, and I recommend that cities also consider carbon embodied in construction materials and food, so that they can take action on these sectors as well.

But we don’t have the right tools yet to quantify all the major sectors and all the pathways to net zero that a city can contribute to. That’s the next step in research: ways to quantify all those things, for a city. We are developing those tools in a zero-carbon calculator for cities. 

Floating Cities May Be One Answer to Rising Sea Levels

An idea that was once a fantasy is making progress in Busan, South Korea. The challenge will be to design settlements that are autonomous and sustainable.

Part of the prototype for the Oceanix floating city.Photographer: Oceanix/BIG-Bjarke Ingels Group

By: Adam Minter
View the original article here

Thanks to climate change, sea levels are lapping up against coastal cities and communities. In an ideal world, efforts would have already been made to slow or stop the impact. The reality is that climate mitigation remains difficult, and the 40% of humanity living within 60 miles of a coast will eventually need to adapt.

One option is to move inland. A less obvious option is to move offshore, onto a floating city.

It sounds like a fantasy, but it could real, later if not sooner. Last year, Busan, South Korea’s second-largest city, signed on to host a prototype for the world’s first floating city. In April, Oceanix Inc., the company leading the project, unveiled a blueprint.

It sounds like a fantasy, but it could real, later if not sooner. Last year, Busan, South Korea’s second-largest city, signed on to host a prototype for the world’s first floating city. In April, Oceanix Inc., the company leading the project, unveiled a blueprint.

Representatives of SAMOO Architects & Engineers Co., one of the floating city’s designers and a subsidiary of the gigantic Samsung Electronics Co., estimate that construction could start in a “year or two,” though they concede the schedule might be aggressive. “It’s inevitable,” Itai Madamombe, co-founder of Oceanix, told me over tea in Busan. “We will get to a point one day where a lot of people are living on water.”

If she’s right, the suite of technologies being developed for Oceanix Busan, as the floating city is known, will serve as the foundation for an entirely new and sustainable industry devoted to coastal climate adaptation. Busan, one of the world’s great maritime hubs, is betting she’s right.

A Prototype for Atlantis

Humans have dreamed of floating cities for millenniums. Plato wrote of Atlantis; Kevin Costner made Waterworld. In the real world, efforts to build on water date back centuries.

The Uru people in Peru have long built and lived upon floating islands in Lake Titicaca. In Amsterdam, a city in which houseboats have a centuries-long presence, a handful of sustainably minded residents live on Schoonschip, a small floating neighborhood, completed in 2020.

Madamombe began thinking about floating cities after she left her role as a senior adviser to then-UN Secretary General Ban Ki-Moon. The New York-based native of Zimbabwe had worked in a variety of UN roles over more than a decade, including a senior position overseeing partnerships to advance the UN’s Sustainable Development Goals. After leaving, she maintained a strong interest in climate change and the risks of sea-level rise.

Her co-founder at Oceanix, Marc Collins, an engineer and former tourism minister for French Polynesia, had been looking at floating infrastructure to mitigate sea-level risks for coastal areas like Tahiti. An autonomous floating-city industry seemed like a good way to tackle those issues. Oceanix was founded in 2018.

As we sit across the street from the lapping waves of Busan’s Gwangalli Beach, Madamombe concedes that they didn’t really have a business plan. But they did have her expertise in putting together complex, multi-stakeholder projects at the UN.

In 2019, Oceanix co-convened a roundtable on floating cities with the United Nations Human Settlements Program — or UN-Habitat — the Massachusetts Institute of Technology Center for Ocean Engineering and the renowned architectural firm Bjarke Ingels Group (better known as BIG). “The UN said there’s this new industry that’s coming up, it’s interesting,” Madamombe said. “They wanted to be able to shape the direction that it took and to have it anchored in sustainability.”

At the Oceanix roundtable, BIG unveiled a futuristic, autonomous floating city composed of clusters of connected, floating platforms designed to generate their own energy and food, recycle their own wastes, assist in the regeneration of marine life like corals, and house thousands.

The plan was conceptual, but the meeting concluded with an agreement between the attending parties, including UN-Habitat: Build a prototype with a collaborating host government. Meanwhile, Oceanix attracted early financial backers, including the venture firm Prime Movers Lab LLC.

Busan, home of the world’s sixth-busiest port, and a global logistics and shipbuilding hub, quickly emerged as a logical partner and location for the city. “The marine engineering capability is incredible,” Madamombe tells me. “Endless companies building ships, naval architecture. We want to work with the local talent.”

Busan’s mayor, Park Heong-joon, who is interested in promoting Busan as a hub for maritime innovation, shared the enthusiasm and embraced the politically risky project as he headed into an election. An updated prototype was unveiled at the UN in April 2022.

Concrete Platforms, Moored to the Seafloor 

The offices of SAMOO, the Korean design firm that serves as a local lead on Oceanix Busan, are located high above Seoul. On a recent Monday morning, I met with three members of the team that’s worked closely with BIG, as well as local design, engineering and construction firms, to bring the floating city to life.

Subsidiaries of Samsung don’t take on projects that can’t be completed, and SAMOO wants me to understand that they’re convinced this project is doable. They also want me to understand that it’s important.

“Frankly, it’s not the floating-city concept we were interested in, but the fact that it’s sustainable,” says Alex Sangwoo Hahn, a senior architect on the project.

Floating infrastructure is nothing new in Korea. Sebitseom, a cluster of three floating islands in Seoul’s Han River, were completed in 2009 and are home to an event center, restaurants and other recreational facilities.

But they are not autonomous or sustainable, and they were not built to house thousands of people safely. Built from steel, they are likely to last years. But corrosion and maintenance will eventually be an issue.

Oceanix Busan must be more durable and stable. Current plans place it atop three five-acre concrete platforms that are moored to the seafloor, with an expected life span of 80 years. The platforms will be 10 meters deep, with only two meters poking above the surface. Within the platforms will be a vast space designed to hold everything from batteries to waste-management systems to mechanical equipment.

That’s a lot of space, but the design and engineering teams are learning that there’s never enough room to do everything. For example, indoor farming — an aspiration at Oceanix — requires large amounts of energy that must be devoted to other goals.

Dr. Sung Min Yang, the project manager on Oceanix Busan and an associate principal at SAMOO, acknowledges that — for now — the floating city won’t meet all its aspirations. “We hoped to be net positive with energy, we would recycle everything and not have any waste going out,” he says. “Now we are striving for net zero, but we are also looking at a backup connection to the mainland for electricity and wastewater.

Madamombe, who spends much of her time working out differences between the various teams involved in the project, isn’t bothered that some of the initial vision must be reined in. She recounts a piece of advice she received from advisers from the MIT Center for Ocean Engineering: “Don’t try to prove everything.” She shrugs. “If we grow 50% of our food and bring 50% in, will it be a great success?” she asks. “Yes, it would be. It’s a city!”

That wouldn’t be the only success. Creating three massive floating concrete platforms that can safely support multi-story buildings while recycling the wastes of residents (including water) would be a major technological advance, and one that Oceanix says that it — and its partners — can pull off, and profitably market. In time, the technologies will improve, becoming more autonomous and sustainable, in line with Oceanix’s earliest aspirations.

But first a prototype must be built. SAMOO estimates that constructing the first floating platforms will require two to three years as the contractors and engineers work out the techniques. Even under the best of circumstances, construction won’t start until next year at the earliest, putting completion — aggressively — mid-decade.

Costs are also daunting. Estimates for this first phase of Oceanix Busan range as high as $200 million and — so far — that funding hasn’t been secured. That will require private fundraising, including in Korea.

Madamombe says Busan will “help raise money by backing the project and making introductions,” not by contributions. But the slow ramp-up isn’t dissuading anyone. According to SAMOO, multiple Korean shipbuilding companies are interested in the project.

An aerial view of the design. 
Photographer: Oceanix/BIG-Bjarke Ingels Group

It’s a Start

Visionaries have long dreamed of floating cities that are politically autonomous, as well as resource autonomous. One day, that dream might be achieved. But for now, Oceanix is about developing technologies that help coastal communities adapt to climate change and persist as communities.

To do that, Oceanix Busan will be directly connected to Busan by a roughly 260-foot bridge. Rather than function as an autonomous city, it will instead function as a kind of neighborhood under the full administrative jurisdiction of Busan city hall.

Of course, three platforms and 12,000 planned residents and visitors won’t be enough to save Busan from climate change. Neither will the additional platforms that Oceanix hopes to see built and connected to the first three in coming years.

But it’s a start that can serve as a model and inspiration for other communities hoping to adapt to sea-level changes, rather than just respond to them. After all, disaster assistance and sea walls are expensive and require intensive planning, too.

Long term, humanity will need to learn to live with rising sea levels. Floating cities will be one way for coastal communities to do it.