Climate Change

Turning plastic waste into low-cost hydrogen fuels

By Victoria Corless 
View the original article here

A flash heating technique breaks down plastic waste and converts it to pure hydrogen and graphene with significantly less emissions and at a low cost.

As the impacts of the ongoing climate crisis and environmental challenges like pollution and ecosystem degradation become increasingly evident, the need for innovative solutions that address these complex issues on multiple fronts grows more urgent.

In a recent study published in Advanced Materials, researchers led by Boris Yakobson and James Tour from the Department of Materials Science and NanoEngineering at Rice University in the US are doing just this with a new technology that converts waste plastic into clean hydrogen gas and high-purity graphene without any carbon dioxide (CO2).

“What if we turned waste plastic into something much more valuable than recycled plastic while at the same time capturing the hydrogen that is locked inside?” asked Kevin Wyss, a chemist at SLB (formerly known as Schlumberger) who completed the project as part of his Ph.D. thesis.

This idea led to a transformative solution that not only mitigates environmental harm but also harnesses untapped value from problematic waste materials.

The desire for hydrogen

Hydrogen stands out as a clean and attractive fuel source due to its ability to yield substantial energy per unit weight while generating water as its sole byproduct.

“This is what makes it sustainable or ‘green’ compared to current gas, coal, or oil fuels, which emit lots of CO2,” said Wyss. “And unlike batteries or renewable power sources, hydrogen can be stored and re-fueled quickly without waiting hours to charge. For this reason, many automobile manufacturers are thinking about transitioning to hydrogen fuel.”

In 2021, the global consumption of hydrogen reached a staggering 94 million tonnes, and demand is projected to surge in the coming decade. However, the dilemma lies in the fact that, despite hydrogen’s reputation as a green fuel, the dominant method of hydrogen production still relies on fossil fuels through a process called steam-methane reforming, which is not only energy intensive, but results in CO2 emissions as a byproduct. “In fact, for every ton of hydrogen made industrially right now, 10-12 tons of CO2 are produced,” said Wyss.

An emerging alternative is to produce hydrogen gas through a process known as electrolysis, where water is split into its constituent elements using electricity. While the electricity source can be renewable, such as solar, wind, or geothermal energy, ensuring this remains a challenge. These processes also require additional materials, such as catalysts, and cost around $3-5 USD per kg of hydrogen, making it difficult to compete with the reforming process at ~$2 USD per kg.

“You can see why we need methods to produce hydrogen in an efficient and low-cost method that does not produce large amounts of CO2,” said Wyss.

The problem with plastics and hydrogen fuels

Wyss explained that the challenges posed by plastic waste pollution and low-carbon hydrogen production are problems that scientists have successfully addressed decades ago.

“In the case of plastic waste pollution, we know how to recycle plastics — the problem lies in the fact that recycling is so expensive, with the high costs of manually separating plastic types, washing the waste, and then re-melting the polymers,” he said. “As a result, recycled plastics often cost more than new plastics, so there is not an economic incentive to recycle and thus, pollution is still a problem decades later.

“In the case of hydrogen production, we know how to make hydrogen fuel without producing CO2, but is two to three times more expensive than methods that produce hydrogen with lots of CO2.”

Hence, the real challenge lies not in solving these problems, but rather finding ways to reduce the cost of their solutions — a challenge Wyss and his colleagues are tackling head on.

Flash Joule heating breaks down plastics

Their approach uses flash Joule heating, a cutting-edge technique for rapidly heating materials to extremely high temperatures. To achieve this, an electric current is run through a material that has electrical resistance, which swiftly converts the electricity into heat, achieving temperatures of thousands of Kelvins in mere seconds.

“We discharge current through the sample of plastic, with a small amount of added ash to make it conductive, and achieve temperatures up to 2,500°C within a tenth of a second, before the sample cools back down within a few seconds,” said Wyss. “This rapid heating reorganizes the chemical bonds in the plastic — the carbon atoms in the plastic convert to the [carbon-carbon] bonds of graphene, and the hydrogen atoms convert to H2 [gas].”

“This process upcycles the waste plastics with high efficiency using no catalyst or other solvents,” he continued. “Once our plastics have undergone the reaction, we also get pure, valuable graphene, used for strengthening cars, cement, or even making flexible electronics and touchscreens, and which currently has a value of $60,000-$200,000 per ton.”

Wyss says that his lab at Rice University has been working on flash Joule heating for the past five years, but their main focus was previously on making graphene from plastics. But he says that, after some time, they realized that many plastic polymers also contain atomic hydrogen. “If we end up with graphene, which is 100% pure carbon, where is all the atomic hydrogen locked in the plastic going?” he asked.

They therefore set about trapping and studying the volatile gases emitted during their flash Joule heating process, and to their surprise discovered they were liberating almost 93% of the atomic hydrogen and were able to recover up to 64% of it as pure hydrogen — yields that are comparable to current industrial methods that emit five to six times more CO2.

“Our method produces 84% less CO2 and greenhouse gases per ton of hydrogen produced, compared to the current popular industrial method of steam methane reforming, […] and uses less energy than current ‘green’ hydrogen production methods, such as electrolysis,” Wyss said.

Making an EarthShot

This aligns with the US Department of Energy’s EarthShot Initiative, modeled after the historic “Moonshot Challenge”, which aimed to put a man on the moon in the 1960s. Similarly, the EarthShot initiative seeks to mobilize resources and creativity to achieve ambitious environmental goals.

These goals are intended to be scalable, achievable, and designed to tackle critical issues related to climate change, biodiversity loss, pollution, and other environmental crises. “The climate crisis calls for a different kind of moonshot,” they wrote on the website. “Energy Earthshots [such as the Hydrogen Shot] will accelerate breakthroughs of more abundant, affordable, and reliable clean energy solutions within the decade.”

The goal is to make 1kg of clean hydrogen cost $1 USD within the next decade, where clean hydrogen is defined as any that is produced with less then 4 kg of CO2 as a byproduct.

“Our research has shown that we can do that now, if the [flash Joule heating] process is scaled up, converting waste plastics into clean hydrogen and graphene,” said Wyss. “Currently, 95% of hydrogen produced globally results in 10-12 kg of CO2 being produced as a byproduct. Our process produces as little as 1.8 kg of CO2 per kg of hydrogen.”

Before this can happen, Wyss acknowledges that scale-up is still an issue. As hydrogen is a flammable gas, its safe capture and purification requires some careful planning and engineering. But Wyss is hopeful it can be done.

“A company named Universal Matter was started three years ago to scale-up the flash Joule heating process to make graphene,” Wyss said. “In that short time, [they have] scaled from gram-per-day levels to ton-per-day graphene production. So, we are very optimistic that this hydrogen production method can be similarly scaled successfully as the core principles are identical.”

Reference: Boris I. Yakobson, James M. Tour, et al., Synthesis of Clean Hydrogen Gas from Waste Plastic at Zero Net Cost, Advanced Materials (2023). DOI: 10.1002/adma.202306763

Feature image credit: tanvi sharma on Unsplash

Plastic to Power: Transforming Trash into World-Changing Hydrogen

By Alicia Moore
View the original article here

The Scale of the US Plastic Waste Problem

The United States is projected to generate 220 million tons of plastic waste in 2024, a 7.11% increase from 2021. Over a third of this waste is expected to be mishandled, contributing significantly to global plastic pollution. With only 19.8% of PET, HDPE, and PP plastics being recycled, the remainder often ends up in landfills, oceans, or incinerators.

The theoretical Plastic Overshoot Day for 2024 is set for this week, September 5, marking when plastic waste production surpasses the planet’s management capacity. A study by EA Earth Action identifies the top offenders in per capita waste generation:

  1. Michigan
  2. Indiana
  3. Illinois

The concept of converting plastic waste into hydrogen fuel offers a potential solution to both waste management and energy challenges. This process involves:

  • Collection
  • Sorting
  • Shredding
  • Pyrolysis
  • Steam reforming

Each step contributes to a cleaner planet while producing a valuable resource. Hydrogen fuel, a cleaner alternative to fossil fuels, could aid in reducing greenhouse gas emissions and ensure that plastic waste is put to purposeful use.

Implementing such a system would require carefully designed infrastructure, stringent regulations, and public cooperation. While challenging, the impact on the environment, human health, and biodiversity warrants such an endeavor. Given that 94% of Americans are inclined to recycle plastics and limit single-use plastic, there is potential for such transformative systems to take root.1

Rice University Breakthrough

Researchers at Rice University have pioneered a easy to scale-up method to convert mixed plastic waste into high-yield hydrogen gas and graphene through rapid flash Joule heating. This breakthrough not only generates clean hydrogen but also creates valuable graphene.

Summary of How it Works and Benefits of Their Process:

  • Flash Joule heating is a process used to convert plastic waste into hydrogen gas and graphene.
  • The method rapidly heats plastic waste to high temperatures, causing hydrogen to vaporize and leaving behind graphene.
  • This process is scalable, low in complexity, and environmentally friendly.
  • The production of graphene helps offset the costs of hydrogen production, making it economically viable.
  • Flash Joule heating can produce high-value nanomaterials efficiently and at a low cost.
  • The process results in reduced carbon emissions compared to traditional methods.
  • It can synthesize various graphitic materials, such as holey and wrinkled graphene, which have increased surface areas for applications in energy storage and water purification.
  • The method demonstrates high yields of hydrogen gas from common consumer waste plastics.
  • Life-cycle assessments show this method releases less CO2 than most current hydrogen production methods.
  • The approach supports sustainable energy transitions and addresses plastic waste effectively.

Nanyang Technological University Innovation

NTU in Singapore has developed an energy-efficient method using light-emitting diodes (LEDs) and a commercially available vanadium catalyst. This process operates at room temperature, drastically reducing the energy footprint compared to traditional heat-driven recycling methods.3

Combining these cutting-edge technologies into a unified system could yield significant environmental and economic benefits. By deploying LED-based pyrolysis followed by advanced steam reforming techniques, the process efficiency can be maximized while minimizing greenhouse gas emissions.

“Integrating these technologies into a circular economy framework, where waste is treated as a resource rather than a disposal problem, will also drive market acceptance and investment.”

This approach reduces the plastic burden on landfills and oceans, and addresses energy security issues by providing an alternative, sustainable fuel source.

Environmental and Economic Impact

Upcycling plastic waste into hydrogen fuel offers significant environmental and economic benefits. By diverting plastic waste from landfills and oceans, this process can mitigate:

  • Soil contamination
  • Leachate production
  • Marine pollution

The reduction in microplastics entering the food chain would have positive implications for both marine life and human health.

Economic Benefits

Creating and operating hydrogen production facilities from plastic waste would generate new jobs across various sectors, from engineering to facility management. The demand for specialized skills in pyrolysis, steam reforming, and hydrogen purification would foster new educational and vocational opportunities.

The shift to hydrogen fuel derived from plastic waste can offer a competitive edge in the face of increasing regulatory pressures to reduce carbon footprints and fluctuating fossil fuel prices. Advancements in technology promise to reduce the cost and energy requirements of hydrogen production, enhancing the feasibility and affordability of scaling up these processes.

In Summary, converting plastic waste into hydrogen and graphene offers a multitude of environmental benefits. This innovative process drastically reduces the amount of plastic ending up in landfills and oceans, where it can leach harmful substances into the ground and marine ecosystems.

By transforming plastic waste, not only is pollution minimized, but valuable graphene is produced, which can be used across various industries, from electronics to materials science. Furthermore, the hydrogen generated serves as a clean energy source, as it emits only water when used as fuel, contributing to a sustainable energy future. This water emission is so clean that some consider it drinkable, showcasing the immense potential of this technology to support environmental and energy goals.

Exploring the full potential of upcycling plastic waste into hydrogen fuel allows the United States to address both environmental sustainability and economic viability. With strategic investments, supportive regulations, and public engagement, this approach can mitigate plastic pollution, foster a circular economy, and position the nation on a sustainable path towards energy transition and environmental stewardship.

  1. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3(7):e1700782.
  2. Wyss B, Luong DX, Tour JM. Recycling plastic waste into graphene and clean hydrogen. Carbon Energy. 2021;3(3):475-485.
  3. Salehzadeh Einabad M, Dehghani H, Nagarajan D, et al. Light-driven plastic waste valorisation to hydrogen fuel and carbon nanomaterials. Nat Catal. 2022;5:706-716.

Addressing The E-Waste Crisis: Embrace Device Reuse Over Destruction

Written By: Namrata Sengupta
View the original article here

Getty

The global surge in electronic waste (e-waste) poses a critical environmental and health challenge. In fact, according to the UN’s recent Global E-Waste Monitor Report, “The world’s generation of electronic waste is rising five times faster than documented e-waste recycling.”

The report estimates that in “only 12 years, the amount of e-waste generated per year worldwide almost doubled, to 62 billion kilograms in 2022. It is projected to increase to 120 billion kilograms in 2030.” Most of the e-waste ends up in landfills, as currently, only 22.3% of e-waste is collected and recycled. The problem here is that e-waste is nonbiodegradable. It also poses a significant health hazard and pollutes land, water and air.

The primary factors behind e-waste growth are the ever-expanding global data sphere, rapidly evolving technology, shorter device refresh cycles, increased appetite for electronic devices and insufficient recycling of e-waste.

Businesses, in their bid to safeguard data privacy, also contribute significantly to the e-waste crisis by employing traditional physical device-destruction methods like shredding, degaussing or burning to protect data when retiring or disposing of IT assets.

Many of these devices could have been reused after repair and refurbishing. If we talk about e-waste generated due to the physical destruction of potentially usable drives, the numbers are astonishing.

Device reuse will be an important factor in mitigating the hazardous effects of e-waste on the environment and human health.

Device reuse is the practice of prolonging the life of IT devices by refurbishing and repairing them for reuse rather than disposing of them physically. It plays a major role in reducing the generation of e-waste and its impact on the environment.

Organizations should practice secure media sanitization over device destruction to promote device reuse. Global bodies like NIST with their Special Publication 800-88 and the IEEE with Standard for Sanitizing Storage have stated that media sanitization techniques like overwriting, cryptographic erasure, block erasure, etc., are sufficient for permanent data removal beyond the scope of recovery, eliminating the need for physical destruction. Erased devices can be reused without the fear of compromising data confidentiality.

There are several ways that device reuse addresses the e-waste crisis. Here are a few to consider:

• Reduction Of E-Waste In Landfills: Repairing and refurbishing increases the life span of IT devices, and they can be used for longer durations. This helps prevent operational devices from ending up in landfills and stops the leaching of hazardous material into soil and water resources.

• Reduction Of Dependency On Mining: When IT devices are used for longer, they reduce the dependency on mining for new raw materials. It helps reduce the ecological impact of mining, like deforestation, loss of natural habitat and environmental degradation.

• Energy Conservation And Reduction In Emission: A significant portion of the energy consumed by a laptop in its entire life cycle is used during the manufacturing process. Reusing devices significantly cut down on energy consumption and carbon emissions during manufacturing and transportation. It thereby reduces the carbon footprint of an organization and helps diminish the effects of e-waste.

• Promotes A Circular Economy: Reuse is a crucial component of a circular economy. It supports circularity by keeping devices and materials in use for longer durations, creating a sustainable business model that prioritizes refurbishment and recycling over physical destruction.

Ways To Implement Effective Device Reuse Strategies

As e-waste reaches alarming levels, the need for sustainable practices is more urgent than ever. Merely destroying devices worsens the crisis, endangering both the environment and human health. Embracing device reuse not only mitigates the adverse effects of e-waste but also fosters a circular economy, advocating sustainability and mindful consumption.

Implementing an effective device reuse strategy requires careful consideration. Based on the considerations above, organizations should adopt a holistic approach to ensure their strategies are in line with their organizational sustainability goals and that their device reuse practices can be easily integrated with their ongoing operations.

Here are a few ways that businesses can implement device reuse within their organization:

1. Create a device reuse policy. An organizational device reuse policy should establish clear parameters for selecting IT assets that can be reused. This policy should consider parameters like devices’ computing power, feasibility of repurposing, cost of repair, upgrades required, device refresh cycles, etc.

2. Perform data erasure. Removing sensitive data from the devices before they are reused is a must to ensure data confidentiality and comply with data privacy laws. Use a certified data wiping tool to ensure permanent data removal and also generate proof of destruction for audit purposes.

3. Repair or refurbish. Perform hardware diagnostics to get a real-time picture of the device’s health. Repair or replace the parts that are faulty and reuse the device to its fullest extent.

4. Repurpose devices. Older devices should be repurposed for different roles. For example, a laptop previously used by the R&D team for high computing tasks can be reassigned to the admin department, where only basic computing power is needed.

5. Recycle faulty parts. Computer components that have stopped working or are faulty should be responsibly recycled to ensure that they don’t end up in landfills. Recycling conserves resources and reduces the environmental impact of mining for new raw materials, reducing Scope 3 emissions and thereby promoting sustainability.

The time has come to prioritize reuse over destruction and proactively tackle the e-waste challenge. With these best practices, organizations can take the necessary proactive steps to help effectively address the e-waste crisis.

The Growing Environmental Risks of E-Waste

Published By: Geneva Environment Network
View the original article here

About E-Waste

E-waste, electronic waste, e-scrap and end-of-life electronics are terms often used to describe used electronics that are nearing the end of their useful life, and are discarded, donated or given to a recycler. The UN defines e-waste as any discarded products with a battery or plug, and features toxic and hazardous substances such as mercury, that can pose severe risk to human and environmental health.

According to the UN, in 2021 each person on the planet will produce on average 7.6 kg of e-waste, meaning that a massive 57.4 million tons will be generated worldwide. Only 17.4% of this electronic waste, containing a mixture of harmful substances and precious materials, will be recorded as being properly collected, treated and recycled. Many initiatives are undertaken to tackle this growing concern, but none of them can be fully effective without the active role and correct education of consumers.

The International Telecommunication Union (ITU) also indicates that e-waste is one of the largest and most complex waste streams in the world. According to the Global E-waste Monitor 2020, the world generated 53.6 Mt of e-waste in 2019, only 9.3 Mt (17%) of which was recorded as being collected and recycled. The fourth version of the Global E-waste Monitor 2024 shows an increasing trend in the generation of e-waste as by 2022, the world generated  62 billion kg of e-waste,  (7.8 kg per capita). Only 22.3 percent (13.8 billion kg) of the e-waste generated was documented as properly collected and recycled.

E-waste contains valuable materials, as well as hazardous toxins, which make the efficient material recovery and safe recycling of e-waste extremely important for economic value as well as environmental and human health. The discrepancy in the amount of e-waste produced and the amount of e-waste that is properly recycled reflects an urgent need for all stakeholders including the youth to address this issue.

Tne United Nations Environment Programme (UNEP) also estimated in a 2015 report “Waste Crimes, Waste Risks: Gaps and Challenges in the Waste Sector” that 60-90 per cent of the world’s electronic waste, worth nearly USD 19 billion, is illegally traded or dumped each year.

Environmental Risks

E-waste can be toxic, is not biodegradable and accumulates in the environment, in the soil, air, water and living things. For example, open-air burning and acid baths being used to recover valuable materials from electronic components release toxic materials leaching into the environment. These practices can also expose workers to high levels of contaminants such as lead, mercury, beryllium, thallium, cadmium and arsenic, and also brominated flame retardants (BFRs) and polychlorinated biphenyls, which can lead to irreversible health effects, including cancers, miscarriages, neurological damage and diminished IQs.

A 2019 joint report “A New Circular Vision for Electronics – Time for a Global Reboot” calls for a new vision for e-waste based on the circular economy concept, whereby a regenerative system can minimize waste and energy leakage. The report supports the work of the E-waste Coalition, which includes the ILO, ITU, UNEP, UNIDO, UNITAR, UNU and Secretariats of the Basel and Stockholm Conventions.

According to the report, the improper handling of e-waste is resulting in a significant loss of scarce and valuable raw materials, including such precious metals as neodymium (vital for magnets in motors), indium (used in flat panel TVs) and cobalt (for batteries). Almost no rare earth minerals are extracted from informal recycling; these are polluting to mine. Yet metals in e-waste are difficult to extract; for example, total recovery rates for cobalt are only 30% (despite technology existing that could recycle 95%). The metal is, however, in great demand for laptop, smartphone and electric car batteries. Recycled metals are also two to 10 times more energy efficient than metals smelted from virgin ore. Furthermore, mining discarded electronics produces 80% less emissions of carbon dioxide per unit of gold compared with mining it from the ground.

In 2015, the extraction of raw materials accounted for 7% of the world’s energy consumption. This means that moving towards the use of more secondary raw materials in electronic goods could help considerably in reaching the targets set out in the Paris Agreement on climate change.

Climate Change

It is also worth considering the effects electronic goods have on climate change. Every device ever produced has a carbon footprint and is contributing to human-made global warming. Manufacture a tonne of laptops and potentially 10 tonnes of CO2 are emitted. When the carbon dioxide released over a device’s lifetime is considered, it predominantly occurs during production, before consumers buy a product. This makes lower carbon processes and inputs at the manufacturing stage (such as use recycled raw materials) and product lifetime key determinants of overall environmental impact.

Lack of Recycling

Recycling rates globally are low. Even in the EU, which leads the world in e-waste recycling, just 35% of e-waste is officially reported as properly collected and recycled. Globally, the average is 20%; the remaining 80% is undocumented, with much ending up buried under the ground for centuries as landfill. E-waste is not biodegradable. The lack of recycling weighs heavily on the global electronic industry and as devices become more numerous, smaller and more complex, the issue escalates. Currently, recycling some types of e-waste and recovering materials and metals is an expensive process. The remaining mass of e-waste – mainly plastics laced with metals and chemicals – poses a more intractable problem.

Circular Approach for Electronics

A new vision for the production and consumption of electronic and electrical goods is needed. It is easy for e-waste to be framed as a post-consumer problem, but the issue encompasses the lifecycle of the devices everyone uses. Designers, manufacturers, investors, traders, miners, raw material producers, consumers, policy-makers and others have a crucial role to play in reducing waste, retaining value within the system, extending the economic and physical life of an item, as well as its ability to be repaired, recycled and reused.

Changes in technology such as cloud computing and the internet of things (IoT) could hold the potential to “dematerialize” the electronics industry. The rise of service business models and better product tracking and takeback could lead to global circular value chains. Material efficiency, recycling infrastructure and scaling up the volume and quality of recycled materials to meet the needs of electronics supply chains will all be essential. If the sector is supported with the right policy mix and managed in the right way, it could also lead to the creation of millions of decent jobs worldwide.

International E-Waste Day

Each year, International E-Waste Day is held on 14 October, an opportunity to reflect on the impacts of e-waste and the necessary actions to enhance circularity for e-products. ​​​​​International E-Waste Day was developed in 2018 by the WEEE Forum to raise the public profile of waste electrical and electronic equipment recycling and encourage consumers to recycle. Learn more about the activities for each edition below:

  • International E-Waste Day 2023
  • International E-Waste Day 2022
  • International E-Waste Day 2021

Role of Geneva

Organizations are listed in alphabetical order

Basel Convention

The overarching objective of the Basel Convention on the Control of Transboundary Movements of Hazardous Wastes and their Disposal is to protect human health and the environment against the adverse effects of hazardous wastes. E-waste is categorized as hazardous waste due to the presence of toxic materials such as mercury, lead and brominated flame retardants are considered as hazardous waste according to the Basel Convention. In addition, transboundary movements of hazardous and other wastes, including e-waste ending up in dumps, are deemed to be illegal traffic under the Basel Convention, Article 9.

As part of the Convention, the Partnership for Action on Computing Equipment (PACE) was launched at the ninth meeting of the Conference of the Parties to the Basel Convention, on 23-27 June 2008. PACE is a multi-stakeholder partnership for governments, industry leaders, non-governmental organizations and academia to tackle the environmentally sound management, refurbishment, recycling and disposal of used and end-of-life computing equipment, taking into account social responsibility and the concept of sustainable development, and promoting the sharing of information on life cycle thinking.

Furthermore, the Mobile Phone Partnership Initiative (MPPI) was launched in 2002 on the environmentally sound management of end-of-life mobile telephones. Under the MPPI five technical guidelines (awareness raising – design considerations, collection of used and end-of-life mobile phones, transboundary movement of collected mobile phones, refurbishment of used mobile phones, and material recovery/recycling of end-of-life mobile phones) were developed.

Under the Basel Convention, Parties and other stakeholders have also been working on a set of global policies on specific challenges related to the trade of WEEE and used equipment through the technical guidelines on transboundary movements of electrical and electronic waste and used electrical and electronic equipment, in particular regarding the distinction between waste and non waste, which was adopted by the Conference of the Parties to the Basel Convention, on an interim basis, in 2019. The guidelines focus on clarifying aspects related to transboundary movements of e-waste and used equipment that may or may not be waste.

E-Waste Coalition

In addition, on 21 March 2018 at the World Summit on the Information Society (WSIS) Forum, seven United Nations entities signed a Letter of Intent paving the way for greater collaboration in the area of e-waste management in developing a UN E-Waste Coalition. Its aims include a commitment by the signatories to increase collaboration, building partnership and supporting Member States to address the global WEEE challenge. Further to this, at the 2019 WSIS Forum, three new UN entities signed the Letter of Intent.

The coalition brings together the following organizations, the majority based in Geneva:

  • ILO
  • ITC
  • ITU
  • UNEP
  • UNU
  • United Nations Human Settlement (UN Habitat)
  • United Nations Industrial Development Organization (UNIDO)
  • United Nations Institute for Training and Research (UNITAR)
  • World Health Organization (WHO)
  • Secretariat of the Basel, Rotterdam and Stockholm Conventions

The coalition is supported by the World Business Council for Sustainable Development (WBCSD) and the World Economic Forum, and was coordinated, until 31 October 2020, by the Secretariat of the UN Environment Management Group (UNEMG). UNEP is now hosting the temporary secretariat of the coalition.

International Electrotechnical Commission (IEC)

Founded in 1906, the International Electrotechnical Commission (IEC) is the world’s leading organization for the preparation and publication of International Standards for all electrical, electronic and related technologies, known collectively as “electrotechnology.”

IEC provides a platform to companies, industries and governments for meeting, discussing and developing the International Standards they require. All IEC International Standards are fully consensus-based and represent the needs of key stakeholders of every nation participating in IEC work.

International Labour Organization (ILO)

The only tripartite U.N. agency, since 1919 the International Labour Organization (ILO) brings together governments, employers and workers of 187 member States, to set labour standards, develop policies and devise programmes promoting decent work for all women and men. More than 1.2 billion jobs depend on a stable environment and ecosystems. ILO’s Green Initiative aims to scale up the its knowledge, policy response and capacity to manage a just transition toward greener economies and a sustainable future.

In addition, the Green Jobs Programme signals ILO’s commitment to act on climate change and to promote resource efficient and low-carbon societies. Decent work is a cornerstone for effective policies to green economies for achieving sustainable development. This implies that efforts to reduce adverse environmental impact must lead to socially just outcomes with employment opportunities for all.

International Telecommunication Union (ITU)

Founded in 1865 to facilitate international connectivity in communications networks, the International Telecommunication Union (ITU) is the United Nations specialized agency for information and communication technologies – ICTs. ITU’s Development Bureau (ITU-D) has been given a mandate to “assist developing countries in undertaking proper assessment of the size of e-waste and in initiating pilot projects to achieve environmentally sound management of e-waste through e-waste collection, dismantling, refurbishing and recycling.” (WTDC Resolution 66). To this end ITU-D is developing e-waste guidelines to help countries identify best policies. It is also carrying out an electronic waste management project, and recently launched a new partnership to help improve global e-waste statistics.

ITU, in cooperation with the United Nations University (UNU), have joined forces to form the Global E-waste Statistics Partnership​ (GESP). Its main objectives are to improve and collect worldwide statistics on waste electrical and electronic equipment (WEEE). The GESP also raises visibility on the importance of compiling WEEE statistics and delivers capacity building workshops using an internationally recognized, harmonized measurement framework. The initiative informs policy makers, industries, academia, media and the general public by enhancing the understanding and interpretation of global WEEE data and its relation to the SDGs.

The publication of the Global and Regional E-Waste Monitors are key achievements of the GESP which highlight global growth in the generation of WEEE. These reports also introduce the wider public to the global WEEE challenge and include national analysis on WEEE.

International Trade Centre (ITC)

The transition to a digital world is offering unprecedented opportunities for innovation, entrepreneurship and growth, and how the global consumption of electrical and electronic equipment is generating extraordinary amounts of e-waste. Large dumps sites around the world have been created due to the e-waste generated.

One of the key challenges for the more environmentally sound management of e-waste in developing countries is linking the informal and formal e-waste processors and providing coaching opportunities to small and medium-sized enterprises (SMEs).

SMEs and industry associations can play a key role in unlocking collaboration within values chains to ensure more circular and sustainable approaches. The International Trade Centre (ITC), in collaboration with other signatories of the E-Waste Coalition will use their expertise to help solve these pressing issues.

The ITC has a growing focus on environmental sustainability and social inclusion as important elements for SME competitiveness and for fostering Good Trade. ITC will contribute with these experiences to the important work of the e-waste coalition.

United Nations Environment Programme (UNEP)

UNEP has provided several reports and guidance manuals on dealing with e-waste. The Chemicals and Health Branch is leading UNEP’s activities on chemicals and waste and is the main catalytic force in the UN system for concerted global action on the environmentally sound management of chemicals and waste.

World Health Organization (WHO)

A WHO report on e-waste and child health Children and Digital Dumpsites, released in June 2021, calls for urgent effective and binding action to protect the millions of children, adolescents and expectant mothers worldwide whose health is jeopardized by the informal processing of discarded electrical or electronic devices.

As many as 12.9 million women are working in the informal waste sector, which potentially exposes them to toxic e-waste and puts them and their unborn children at risk.

Meanwhile more than 18 million children and adolescents, some as young as 5 years of age, are actively engaged in the informal industrial sector, of which waste processing is a sub-sector. Children are often engaged by parents or caregivers in e-waste recycling because their small hands are more dexterous than those of adults. Other children live, go to school and play near e-waste recycling centers where high levels of toxic chemicals, mostly lead and mercury, can damage their intellectual abilities

Children exposed to e-waste are particularly vulnerable to the toxic chemicals they contain due to their smaller size, less developed organs and rapid rate of growth and development. They absorb more pollutants relative to their size and are less able to metabolize or eradicate toxic substances from their bodies.

Switzerland and the Canton of Geneva

Retailers, manufacturers and importers are obliged to accept used items of electrical and electronic equipment, in which they deal, free of charge. This obligation also applies if the customer does not purchase a new device or appliance. Consumers, in turn, are obliged to return equipment. The disposal of used equipment through municipal solid waste or bulk waste collections is prohibited. These regulations are contained in the Ordinance on the Return, Taking Back and Disposal of Electrical and Electronic Equipment (ORDEE).

Specialized disposal companies dismantle the electrical and electronic equipment partly manually and then process it mechanically. Problematic components (mercury switches, PCB capacitators, batteries) are dismantled or separated and undergo special disposal. The remaining fragments are separated. Fractions that can undergo material recycling are produced in this way: plastics, iron, aluminium and tin, zinc, nickel and precious metal alloys.

The dismantling and separation of equipment into fractions is mainly carried out in Switzerland. The other processing stages are often carried out abroad because non-ferrous metals processing systems, in particular, are not available in Switzerland.

In accordance with the Ordinance on Movements of Waste (OMW), electrical and electronic equipment is classified as “other controlled waste”. Waste disposal companies in Switzerland that accept such equipment require the authorization of the canton in which the equipment is located. The export and import of such waste requires the authorization of the Swiss Federal Office for the Environment (FOEN). Export to states that are not members of the OECD or EU is prohibited.

In the Canton of Geneva, electronic waste should also be sorted separately by consumers and businesses, in addition to various actors from Recycleurs de Genève.

Google wants to help other companies eliminate plastic from their packaging

The company will publish a 70-page guide in June detailing how it redesigned its boxes, coatings, enclosures and labels.

Written By: Heather Clancy
View the original here

Google’s model showing ‘before and after’ components of its packages including paper-stay tape, silicon adhesive, and a tray made from pulp rather than polystyrene plastic. Source: Heather Clancy/GreenBiz

Google will eliminate plastic from its consumer electronics packaging six months ahead of its self-imposed 2025 deadline. Google made its “plastic-free” pledge in October 2020.

The search giant will publish a 70-page guide in June so that other companies can see how it was done, said David Bourne, lead sustainability strategist for Google, during a session last week at Circularity 24, a GreenBiz event.

The company’s Pixel 8 smartphone, launched in October, was the first product under the new approach.

“You might think it’s sort of strange to enable other companies, potentially to enable other competitors,” Bourne said. “But our point of view on sustainability is that it really should be a collaborative endeavor. Innovation should be shared in sustainability, because if we sincerely want to create a sustainable future, then just a handful of companies being more sustainable isn’t going to achieve that.”

Google is encouraging those who use the guide to offer feedback. 

Making sure design changes don’t frustrate consumers

The idea for the guide originated with the Google team working on the heaviest of its consumer products, TVs. They can weigh up to 40 pounds, said Katy Bolan, Google’s lead for environmental sustainability.

Google doesn’t make televisions, so it worked with manufacturing partners to deliver the goal, she said. 

A major issue was ensuring that design changes weren’t frustrating for consumers, that they met Google’s aesthetic requirements and that they could be disposed of within existing recycling systems, said Miguel Arevalo, packaging innovation lead at Google. “It’s a bad experience if you have to think about it,” he said.

Google’s key design considerations

The new packaging is predominantly paper- and fiber-based, so it can be recycled easily. It required Google engineers, designers and suppliers to rethink lamination and coatings, box assembly, enclosures and labels, among other factors.

The company’s biggest challenges were:

  • Assessing how the elimination of plastic shrinkwrap would affect the durability and reliability of packages.
  • Determining whether size or shapes needed adjustments to accommodate “drop dynamics,” or what happens when an item is dropped.
  • Selecting new coatings and inks that met Google’s branding requirements: At least 50 solutions were reviewed. Suppliers that weren’t transparent about their impacts were eliminated quickly.
  • New ways to seal and waterproof the box, and to make sure it stays closed.
  • The reliability of closure labels and how easy they are to remove.
  • Weighing the future implications of substitutions, particularly for chemicals that could inadvertently result in higher greenhouse gas emissions.

One way to justify the extra cost

New paper-based packaging is likely to be more expensive than plastic, since they aren’t produced at the same scale. “When you first achieve something, it will be the most expensive version,” said Bourne.

That increase can be easier to support when considered as part of the total cost or if the expense is likely to decrease over time, the Google executives said. “We also see this as an investment,” Bourne said. “We are looking at sustainability as an augmentation of the consumer experience.”

Inside the Race to Build America’s EV Charging Network

While the industry plans more convenient, reliable charging stations with amenities, the needed growth in infrastructure remains immense.

By: Tim Stevens
View the original article here

Rolls- Royce

Even zealots of the electric vehicle will tell you that public charging can be a fraught affair. If all goes well, and it often doesn’t, your charging session will likely entail sitting in a dark corner of a parking lot for upwards of an hour. You might have to stand in the rain or snow to operate the charger because most stations lack awnings. You might have to go hungry because many lack access to food. And, perhaps worst of all, your session may be made extra uncomfortable by a typical lack of restrooms. 

But hopefully that’s changing. This year, Electrify America opened an indoor flagship location in San Francisco. Situated at 928 Harrison Street, this bank of 20 high-speed chargers is unique not only for its location—occupying some very expensive real estate—but also for its amenities. While charging, you can grab a drink from a vending machine, host a meeting from one of the lounges, and, yes, even use the bathroom. 

Electrify America’s new flagship location in San Francisco.
ELECTRIFY AMERICA

It’s a massive upgrade from what many EV early adopters have become accustomed to, but it’s just the beginning. With familiar roadside refuges such as Love’s Travel Stops and Buc-ee’s getting in on the game, the future is finally looking a bit brighter when it comes to electrification’s infrastructure.

Just as with buying a new house, the three most important factors in EV charging are location, location, and location. After all, the fastest, most reliable charger in the world is worthless if it isn’t where you need it. The good news? If you have off-street parking, you can likely put a charger in the best possible spot: your home. More than 90 percent of EV owners charge where they live. While slower than the high-speed units at public stations, at-home chargers more than make up for it in convenience. 

The latter can typically bring an empty car to full in under ten hours, which is plenty of time for most folks to replenish their EV’s battery pack between returning from work and heading out again the next day. That potentially means a full charge every morning, so public installations take a back seat for many who use an EV as their daily commuter. That’s why we need far fewer of them than we do gas stations. However, whether road-tripping or just going for an extended Sunday cruise, most EV owners will still need to replenish their batteries in the wild at some point. And while location is still crucial, other factors are gaining significance.

The fastest, most reliable charger in the world is worthless if it isn’t where you need it.
KENA BETANCUR/VIEW PRESS/GETTY IMAGES

Amaiya Khardenavis, an analyst of EV Charging Infrastructure at the energy-research firm Wood Mackenzie, says that there was a lot of “land grabbing” by the larger networks in the early days of EVs. That is, just throwing down chargers as close to major highways as possible with little regard for amenities. According to Khardenavis, today’s locations are more “customer-centric” than before. “The landscape in 2020 was dominated by only a few players in the market,” he says, “and these were all pure providers, like of course Tesla, but EVgo, Electrify America, ChargePoint, and that’s about it.”

Tesla gained an early advantage with its Supercharger network in 2012. Now, with more than 2,000 domestic locations, it’s the largest operator of fast chargers in the United States. But it wasn’t the first. ChargePoint is the nation’s largest network in general, launching back in 2007 and offering over 30,000 locations. Others weren’t far behind, including EVgo, which has about 3,000 chargers spread across 35 states. 

“We’re addressing a lot of our legacy equipment . . . some of our chargers are getting close to a decade old,” says Katie Wallace, EVgo’s director of communications. Yet some newer players are helping to raise the bar. One of those is EV manufacturer Rivian, which launched its Adventure Network just 18 months ago and has since deployed 433 fast chargers across 71 locations. “We’re opening sites each week,” says Sara Eslinger, director of the program for Rivian.

The EVgo network comprises about 3,000 chargers across 35 states.
JUSTIN SULLIVAN/GETTY IMAGES

While the name “Adventure Network” infers that these chargers are at off-road trailheads, and indeed Rivian offers some of those, Eslinger says the company is still focused on serving major transportation corridors, while ensuring availability of amenities like 24-hour food services and restrooms, even going so far as to bring in their own lighting if necessary. As increased EV adoption pulls new investment from some familiar names, features like these are becoming the next battleground.

According to Khardenavis, “More retail stores, retail chains, and travel centers [are] entering the space—Walmart, Pilot, and Flying J, as well as Love’s, everyone is trying to be involved in this space to some extent.”  Though many of these partnerships are still developing (Mercedes-Benz just announced a deal with Buc-ee’s in November, for example), the net result should be a significantly improved charging experience.

The CEO of Rivian, Robert Scaringe, talks about the automaker’s Adventure Network plan at a
presentation last month.
PATRICK T. FALLON/AFP VIA GETTY IMAGES

Why are all these players getting into the market now? The money is starting to flow. In the beginning, running an EV-charging business was brutally complicated and expensive, and served only a small segment of early adopters. Today, utilization rates for public chargers are surging, and so is revenue.

“In our last earnings call, we reported that EVgo’s network throughout was growing five times faster than EVs in operation,” Wallace says. She adds that people are getting more comfortable driving their EVs, relying on chargers further afield. 

Anthony Lambkin, vice president of operations at Electrify America, sees the same trend: “Some of our sites, especially in parts of California, are routinely over 50 percent utilization.” Lambkin refers to this as “massive growth,” and that it has driven the company to redesign some of its chargers, which were not up to surviving that intensity of use. Higher utilization means more money, and more money means more profits. But, as volume increases, so does the opportunity for other revenue streams. 

Unlike these chargers in Oyster Bay, N.Y., an increasing number of future stations may have a
retail-store component.
ALEJANDRA VILLA LOARCA/NEWSDAY RM VIA GETTY IMAGES

“In today’s gas-station business model, over 60 percent of the revenue really comes from store purchases, not from fuel retail,” Khardenavis says. “The future of the EV-charging model will be some sort of co-located retail-store presence.” More chargers at nicer locations, though, means nothing if they’re constantly broken. “The bigger question is going to be how reliable are these chargers?” Khardenavis says. A 2022 study out of the University of California, Berkeley, found that roughly one out of four chargers evaluated in the Greater Bay Area was non-functional (Tesla stations were not included). More troublingly, when the researchers visited those sites a week later, nearly all of them were still not fixed. 

Khardenavis says that such historically poor reliability is directly related to profitability: “I think with that kind of cash flow coming in . . . there is now an impetus to develop this model, which is more customer-centric than just earlier focusing on expanding to locations.”

More chargers at nicer locations means nothing if they’re constantly broken.
JOHN TLUMACKI/THE BOSTON GLOBE VIA GETTY IMAGES

In the world of public charging, there’s Tesla’s Supercharger network, and then there’s everybody else. Tesla’s network not only earned a reputation for being the most readily available and reliable, but using a single plug across every new Tesla model meant owners only had to show up, plug in, and wait while the electrons flowed.

Various plug standards have come and gone for other manufacturers, but that too is changing. Virtually every major manufacturer has agreed to use what’s being called the North American Charging Standard. It’s essentially the same plug that Tesla uses. 

Soon EVs from Ford, Rivian, and plenty of others will not only use the same plug, but will be able to easily charge at Tesla’s Supercharger stations across the nation. That’s the good news. The bad news is that all the non-Teslas on the road today use a combination of different plugs, most featuring the Combined Charging System, or CCS. While Tesla is updating some of its Supercharger installations to support CCS, it’s going to be a slow transition. “We’re going to be in a land of adapters for a while, because the soonest that any non-Tesla OEM is going to come out with the NACS port is probably the fall of 2025,” says Wallace.

Soon other EVs will not only have the same plug as Tesla models, but will be able to use
Tesla’s Supercharger stations across the nation.
CELAL GUNES/ANADOLU AGENCY VIA GETTY IMAGES

Rivian has updated its vehicles to show the location of all Superchargers on its integrated navigation, routing drivers appropriately depending on whether they have an adapter. Yet Khardenavis is concerned that this transition could slow down EV adoption further, with some buyers deciding to wait for the port transition to be completed before investing in a new EV. He fears that EVs with the “now-obsolete” CCS port could sit on dealership lots for longer.

Increased utilization raises the potential for long lines at chargers, but the process of building new stations entails dodging numerous roadblocks. One of those is working with local municipalities, which often aren’t used to moving at the pace of a startup. Electrify America’s Lambkin says that processes are improving, but it’s still a challenge. “Permitting is going much better for us now than it was five years ago because there are far more cities and towns and municipalities that are used to seeing this type of equipment,” Lambkin says. “Back in the day, it was like alien technology.” 

The federal government is helping as well. The 2021 National Electric Vehicle Infrastructure (NEVI) program provides funding to help cover planning, construction, and even maintenance of chargers. “Folks are going to see a lot more stations coming online in the next year and a half,” says Wallace, who attributes this to the various Department of Transportation outposts at the state level becoming “more comfortable and more familiar with how to implement the NEVI program.”

U.S. President Joe Biden gets a demonstration of an EV charging setup at the White House.
JIM WATSON/AFP VIA GETTY IMAGES

Another issue is grid capacity. Khardenavis notes that, for a larger installation, it can take upwards of a year just for the necessary upgrades to power the site. “Project delays are a very common theme in the fast-charging space especially,” he says. But the charging companies are finding ways around this, too. According to Lambkin, Electrify America routinely uses on-site batteries to offset energy usage during peak times and has a so-called “mega pack” in Baker, Calif. “That’s actually to allow us to build that site well in advance of when the utility, SCE in this case, had the capacity to be able to serve the number of dispensers and the amount of power that we needed.”

And finally, there’s construction. It takes time to design a given charger layout, run the conduit, lay out the chargers themselves, and wait for all that concrete to cure. Even that process is changing. “We just deployed our very first station using prefabrication in Texas,” says EVgo’s Wallace. “It’s just a more efficient way to deploy because everything is assembled off-site, in an assembly facility, and then dropped into a skid-frame. So this construction timeline is much shorter.”

Tesla owners line up for an available charger in Utah.
GEORGE FREY/GETTY IMAGES

According to the National Renewable Energy Laboratory (NREL), current growth and demand for EVs will require 1.2 million U.S. public chargers by 2030. As to the current reality, Khardenavis notes that there are about 165,000 available today, and he’s skeptical about that 2030 target. “It’s almost ten-X growth, which is extremely challenging in today’s environment,” he says, adding that predicting the need for six years in the future is itself difficult given the unpredictability of consumer behavior. “I don’t see us reaching that number anytime in the next four- to five-year timeframe. But I think it’s a target that we need to have in mind before we deploy and make plans around making EV charging more ubiquitous.”

A couple wait on their EV to charge in Texas.
SHELBY TAUBER FOR THE WASHINGTON POST VIA GETTY IMAGES

But merely adding more chargers isn’t enough. It’ll take a better all-around charging experience to meet the needs of a new generation of luxury EV owners, such as drivers of the Mercedes-Benz EQS and the Rolls-Royce Spectre, for example. Meeting those standards will take more installations like Electrify America’s indoor flagship. “We’re really competing with the traditional fueling industry, and that’s been around for 100 years,” says Lambkin. “If you think about where we are today and where we’ve come in just five years, think about the levels of improvement that we can expect to see over the next five years.”

While that dingy charger in the back of the shopping-mall parking lot is still the norm for now, there’s work underway to make it the outlier. The real issue remains whether public adoption of EVs and the requisite infrastructure expansion will both maintain enough juice.

Suddenly, US electricity demand is spiking. Can the grid keep up?

Data centers, factories, heat pumps and EVs are putting increasing stress on a grid that isn’t growing fast enough, new data shows.

Written by: Jeff St. John
View the original article here

A recently constructed Meta data center in Eagle Mountain, Utah (George Frey/Getty Images)

For the past two decades, demand for electricity across the United States has hardly increased. But those dynamics appear to have dramatically reversed — and U.S. electric utilities, regulators and power grid planners aren’t prepared to deal with this new paradigm of surging electricity demand.

That’s the key takeaway from a new report by consultancy Grid Strategies called The Era of Flat Power Demand Is Over. Already, massive amounts of clean energy projects are stuck waiting for grid expansions to happen so they can connect. Soon enough, data centers, factories, electric-vehicle charging depots and other major electricity users could start facing the same barriers, the report warns.

In the past year, estimates from U.S. utilities and grid operators of how much electricity demand will grow over the next five years have nearly doubled, jumping from 2.6 percent to 4.7 percent, according to Grid Strategies’ analysis. That’s far higher than the more incremental 0.5 percent annual demand growth estimates of the past decade.

(Grid Strategies)

Over the past 20 years, efficiency improvements — primarily replacing incandescent lightbulbs with fluorescents and then LEDs — have counterbalanced rising power demand from population and economic growth, giving utilities and regulators little reason to expand their power grids or generation capacity.

“I think people got used to…flat power demand,” said Rob Gramlich, Grid Strategies president.

But the combination of near-term growth in electricity use by data centers and industry and longer-term growth from electric vehicles and building heating has upended that status quo, he said. ​“Those who are actively involved in electrifying parts of the economy understand that that means more electricity demand. But it’s only been dribbling out anecdotally here and there.”

That anecdotal data has piled up. In Virginia’s Loudoun County, dubbed ​“Data Center Alley” for its remarkably high concentration of data centers, power shortfalls have prompted utility Dominion Energy to push grid planners to approve a multibillion-dollar grid expansion; some data center operators and regulators have even proposed running backup diesel generators to cover power gaps. In California, lags in grid expansions are causing monthslong wait times for getting connected to utility service, not just for major new loads like electric truck-charging depots but even for everyday commercial and multifamily buildings.

All told, grid planners across the U.S. forecast an increase of 38 gigawatts of peak demand by 2028, according to data reported to federal regulators — a pace of growth that will be hard to keep up with. Data centers and factories can be built in a few years, but it takes four years or more to build new power plants, and up to a decade or longer to build new transmission lines.

While this is a problem that goes beyond the clean energy sector, it also presents a particular hurdle for the energy transition. Not only does the U.S. need to rapidly replace existing coal- and gas-fired power plants with renewables — it also needs to grow fast enough to accommodate the surge of new electricity demand. For this new demand to be met in a way that doesn’t derail the transition away from fossil fuels, the U.S. will need to clear the way for a much speedier buildout of wind, solar, batteries and power lines.

“The main reason [tracking increases in electricity demand] is important is for infrastructure planning,” Gramlich said. ​“Transmission infrastructure in particular takes a long time. As soon as we know this load situation to be the case, we’d better act quickly.”

A sector-by-sector breakdown of where new electricity demand is coming from

Grid Strategies highlighted key demand-growth drivers across several major grid regions, including PJM, which operates the grid in all or part of 13 states from Illinois to Virginia, as well as the grid operators for California, New York and Texas, and four large utilities: Arizona Public Service, Duke Energy, Georgia Power and Portland General Electric in Oregon. 

(Grid Strategies)

Data centers and industrial facilities were among the biggest drivers of new load. New investments in U.S. data centers are projected to exceed $150 billion through 2028, driven by rising demand for cloud computing, telecommunications, digitization and artificial intelligence. Data centers already make up roughly 2.5 percent of total U.S. electricity demand, according to analysis from Boston Consulting Group — but exploding demand for AI could drive that to 7.5 percent by 2030.

(Grid Strategies)


New industrial facilities are also adding demands on the grid. The country has seen about $481 billion in commitments to build and expand industrial and manufacturing facilities since 2021, the report states. Much of that growth stems from the clean energy manufacturing boom and is concentrated in the Midwest and Southeast, which are receiving the lion’s share of battery and EV manufacturing investments spurred by the tens of billions of dollars of federal incentives from the Inflation Reduction Act.

(U.S. Department of Energy)

Not all of the emerging demands for grid electricity are fully accounted for in current load-growth forecasts, Gramlich noted. One striking example is hydrogen produced from zero-carbon electricity, supported by lucrative tax credits offered by the Inflation Reduction Act, which could add gigawatts’ worth of new power demand across the country. But with the exception of New York, grid planners’ ​“load forecasts don’t appear to be explicitly considering the implications of hydrogen fuel plants,” according to the repo

(U.S. Department of Energy)

Increased electricity demand stemming from the electrification of transportation and buildings — a key facet of the Biden administration’s climate plans — is not as granularly tracked in states outside those with aggressive policies on those fronts, such as those adopted by California and New York. In California, where policymakers have set their sights on replacing fossil-fueled vehicles and building heating systems with EVs and heat pumps, respectively, statewide electricity demand is expected to grow by about 60 percent through 2045, according to an analysis from utility Southern California Edison — a remarkable turnaround from a state that’s led the country on energy efficiency. New York expects similar increases in electricity demand over the coming decades.

How uncertainty and cost concerns have limited grid infrastructure buildout

Though it’s clear what direction power demand is moving in, ​“we don’t know enough yet to say what load growth is going to be,” Gramlich cautioned. Load forecasting is an inherently uncertain field. Some proposed data centers and factories may never be built. The uptake rates of EVs or electric-powered heat pumps for homes and buildings can’t be predicted with perfect accuracy.

These uncertainties can lead utility regulators to look askance at utility grid-expansion proposals that may exceed future needs, since their costs are passed on to utility customers via increases on their bills. Over the past half-decade or so, a number of large-scale utility grid-expansion plans have been denied by state regulators due to concerns over excessive costs.

Similar dynamics have slowed efforts within the independent system operators and regional transmission organizations that manage the grids that provide electricity to roughly two-thirds of the country’s population. Since a series of large-scale buildouts in the early 2010s, the scale of U.S. grid projects has declined significantly, with the average miles of newly built high-voltage transmission lines falling by more than half from the first half to the second half of that decade.

Several of these grid operators have approved multibillion-dollar grid buildout plans in the past two years. But those plans still tend to project lower levels of load growth than the data in Grid Strategies’ study indicates is on its way, Gramlich said. ​“It may be that everybody’s base case needs to be ratcheted up.”

The Federal Energy Regulatory Commission, which regulates interstate transmission policy, is in the midst of crafting proposed transmission rules that are expected to require grid operators and utilities to examine a broader set of future grid needs, including increasing demand from electrification of transport and buildings, when making their long-term grid plans.

“There should be a lot of work coming up for every region following the FERC rule,” which is expected some time in the first half of 2024, Gramlich said. ​“That rule will require a lot of planning — and the devil’s in the details in every region.


New industrial facilities are also adding demands on the grid. The country has seen about $481 billion in commitments to build and expand industrial and manufacturing facilities since 2021, the report states. Much of that growth stems from the clean energy manufacturing boom and is concentrated in the Midwest and Southeast, which are receiving the lion’s share of battery and EV manufacturing investments spurred by the tens of billions of dollars of federal incentives from the Inflation Reduction Act.

Map of U.S. manufacturing facilities announced since the passage of the Inflation Reduction Act
(U.S. Department of Energy)

Not all of the emerging demands for grid electricity are fully accounted for in current load-growth forecasts, Gramlich noted. One striking example is hydrogen produced from zero-carbon electricity, supported by lucrative tax credits offered by the Inflation Reduction Act, which could add gigawatts’ worth of new power demand across the country. But with the exception of New York, grid planners’ ​“load forecasts don’t appear to be explicitly considering the implications of hydrogen fuel plants,” according to the report.

Map of planned or operational electrolytic hydrogen facilities in the U.S.
(U.S. Department of Energy)

Increased electricity demand stemming from the electrification of transportation and buildings — a key facet of the Biden administration’s climate plans — is not as granularly tracked in states outside those with aggressive policies on those fronts, such as those adopted by California and New York. In California, where policymakers have set their sights on replacing fossil-fueled vehicles and building heating systems with EVs and heat pumps, respectively, statewide electricity demand is expected to grow by about 60 percent through 2045, according to an analysis from utility Southern California Edison — a remarkable turnaround from a state that’s led the country on energy efficiency. New York expects similar increases in electricity demand over the coming decades.

How uncertainty and cost concerns have limited grid infrastructure buildout

Though it’s clear what direction power demand is moving in, ​“we don’t know enough yet to say what load growth is going to be,” Gramlich cautioned. Load forecasting is an inherently uncertain field. Some proposed data centers and factories may never be built. The uptake rates of EVs or electric-powered heat pumps for homes and buildings can’t be predicted with perfect accuracy.

These uncertainties can lead utility regulators to look askance at utility grid-expansion proposals that may exceed future needs, since their costs are passed on to utility customers via increases on their bills. Over the past half-decade or so, a number of large-scale utility grid-expansion plans have been denied by state regulators due to concerns over excessive costs.

Similar dynamics have slowed efforts within the independent system operators and regional transmission organizations that manage the grids that provide electricity to roughly two-thirds of the country’s population. Since a series of large-scale buildouts in the early 2010s, the scale of U.S. grid projects has declined significantly, with the average miles of newly built high-voltage transmission lines falling by more than half from the first half to the second half of that decade.

Several of these grid operators have approved multibillion-dollar grid buildout plans in the past two years. But those plans still tend to project lower levels of load growth than the data in Grid Strategies’ study indicates is on its way, Gramlich said. ​“It may be that everybody’s base case needs to be ratcheted up.”

The Federal Energy Regulatory Commission, which regulates interstate transmission policy, is in the midst of crafting proposed transmission rules that are expected to require grid operators and utilities to examine a broader set of future grid needs, including increasing demand from electrification of transport and buildings, when making their long-term grid plans.

“There should be a lot of work coming up for every region following the FERC rule,” which is expected some time in the first half of 2024, Gramlich said. ​“That rule will require a lot of planning — and the devil’s in the details in every region.”

Building new power plants instead of transmission lines could help serve these growing loads. But it’s far more efficient to expand the grid to carry power from where it’s most cheaply generated to where it’s most acutely needed.

A host of new transmission grid projects have been approved over the past few years. But they’re still not enough to connect the massive amounts of new renewable power needed to reach the Biden administration’s goals of a zero-carbon grid by 2035. Studies from the U.S. Department of Energy, the Massachusetts Institute of Technology and Princeton University have found the country must double or triple current transmission capacity to reach that goal.

Nor are the new power lines being planned sufficient to eliminate rising grid-congestion costs that are adding billions of dollars to U.S. consumers’ electricity costs, or to enable different regions of the country to share power in order to mitigate the risk of blackouts during extreme winter storms or summer heat waves. This new report also adds the risk of stalling economic growth to this list of threats.

Transmission projects can take more than a decade to move from planning to construction, and they can be blocked by permitting and legal challenges at multiple points. Regional grid-expansion proposals can be scuttled due to conflicts between the utilities and states they connect over how to fairly allocate and distribute the costs of building them.

Federal action on this front has been limited as well. To date, Congress has failed to act on proposed legislation to offer tax incentives to transmission projects, to require minimum amounts of transmission between regions or to give FERC more authority to override state-by-state objections to new projects. But members of both parties in Congress ​“should care enough about infrastructure to support economic growth in this country,” Gramlich said.

A tech-powered approach to overcoming grid bottlenecks

Transmission lines outside Houston, Texas (Courtesy: BFS Man/Flickr)

Contributed by Grzegorz Marecki, co-founder and CEO of Continuum Industries
View the original article here

The expansion of electricity transmission infrastructure is crucial for meeting growing energy demands and accelerating the United States’ clean energy transition. However, spatial planning processes are struggling to keep pace with the speed of change required to tackle climate change. Building clean energy infrastructure today can take more than a decade, largely due to delays in planning and permitting. 

The root of this challenge lies in the complexity of infrastructure planning. Developers need to simultaneously meet the requirements of dozens of stakeholders, which demands a balance between technical and regulatory considerations, as well as the perspectives, priorities, and concerns of diverse stakeholders. Utilities, traditionally functioning as asset managers, are now faced with the need to become developers, driving the rapid expansion of America’s grid demands. However, their processes have not evolved at the pace required to meet this urgent need.

Additionally, as the volume of work increases, the industry grapples with insufficient resources to deliver at the speed required. Automation of repetitive tasks can help free up professionals, enabling them to focus on more complex challenges. The industry also faces constraints due to the limited number of specialists available for traditional tasks.

To overcome these challenges, the industry must embrace a technology-powered paradigm shift. A tech-enabled approach to planning processes, supported by professional oversight, has the potential to revolutionize the development of new energy networks.

Frontloading data for more predictable permitting

With the advancement of technology, governments and other key stakeholders now have access to unprecedented amounts of data. If harnessed effectively, this data can help infrastructure developers expedite decision-making processes and streamline the planning and permitting phases. 

New tools allow for a comprehensive data dive right at the project’s start, providing a full picture of constraints and opportunities. AI algorithms offer intelligent insights, guiding developers toward optimal decisions. These tools empower users by allowing them to configure assumptions, preferences, and project goals before the algorithm runs, ensuring a clear link between inputs and outputs. For example, easier access to spatial data makes it possible for developers to get a comprehensive view of the permits that would be required. Traditionally, they would have to wait a few months for a manually produced report from a consultant. This also allows the professionals to focus on the areas of highest risk. 

Automated routing for unbiased solutions 

By automating routine processes, developers can assess more alternatives than was ever possible without automation and remove decision biases. Algorithms can explore and optimize different solutions for infrastructure assets, simultaneously considering factors such as cost, technical feasibility, and environmental and community impact. 

While still in its early stages of adoption in the US, automated routing is already demonstrating its potential, and it might pay to look across the pond for an example to follow. The UK is slightly ahead of the US when it comes to grid expansion, and more than just encouraging is now expecting transmission companies to standardize and automate routing. The government has adopted a package of 19 measures to slash the project development timeline from 14 to 7 years, but utilities that have adopted a heavily automated approach say that they’ve been able to kick-start their projects and complete 12 months’ worth of work in as little as 8 weeks.

As the energy sector transforms and projects become increasingly complex, automated tools will empower developers to respond swiftly to changing requirements, market dynamics, and regulatory landscapes.

Transparency and accountability through comprehensive decision-making

In the past, manual record-keeping and documentation processes left room for ambiguity and potential oversights. However, technology can establish a reliable audit trail, ensuring that every decision is logged, timestamped, and linked to the specific dataset or analysis that influenced it. This record enables project teams to revisit and refine decisions, supporting external regulatory approvals and fostering accountability throughout the process.

Breaking silos with cross-department collaboration

Technology can also bridge the divide between internal teams, fostering smooth collaboration and streamlining decision-making processes. Providing a shared platform for data and insights ensures that everyone involved in the project is working from the same information, reducing miscommunication and delays.

Through leveraging technology, traditionally siloed disciplines can replace slow email communication channels with rapid feedback based on standard criteria. For example, when engineers move a tower to avoid difficult ground conditions closer to a water body, they receive automatic feedback on whether the new position meets the requirements for setbacks from the water based on environmental protection policies.

Public engagement and transparent project narratives

Beyond internal teams, technology plays a crucial role in engaging the public and garnering support for critical infrastructure projects. Presenting decisions backed by solid evidence and interactive visualizations makes complex data digestible and addresses concerns head-on. This transparency builds trust and fosters a sense of shared ownership, crucial for navigating the permitting process and ensuring community buy-in. 

Stakeholder engagement is also changing thanks to technology. Dynamic maps and immersive 3D visualizations now allow project teams to collaboratively iterate with stakeholders, demonstrating the project’s evolution over time and minimizing impacts. This interactive approach, coupled with routing and siting automation, eliminates the traditional time constraints associated with manual rerouting.

The submission of documents, particularly environmental baseline schedules and reports, has also evolved. Algorithms can now identify potential impacts, presenting them to professionals for screening and defining mitigation strategies. This not only speeds up the process but also frees up professionals for more strategic tasks.

The Linear Infrastructure Planning Panel provides a noteworthy example of the efforts made towards more transparent and dynamic project planning. The Panel’s purpose is to engage key public interest stakeholders, including social and environmental groups, in the development of good practices and ethical approaches in the use of new techniques, such as algorithms and advanced software tools, for infrastructure planning. By actively involving various stakeholders, the Panel contributes to shaping responsible and inclusive technology integration in the planning process, setting a precedent for the industry.

Looking ahead

The American Council on Renewable Energy emphasizes that a $1.5 trillion investment in new transmission infrastructure by 2030 is not just a financial commitment, but an investment in a clean energy future. In this landscape, technology is not a silver bullet, but still a powerful catalyst for change. It facilitates efficiency, transparency, and collaboration, enabling informed decision-making and accelerating the development of a robust and resilient grid.

By embracing a tech-powered approach, the US can overcome the bottlenecks plaguing the current system and realize the full potential of clean energy. This transformation isn’t about replacing human expertise; it’s about empowering and augmenting it, fostering a synergy that paves the way for a more efficient and sustainable future.

Timeline 2024: 28 sustainability policies, guidelines and targets to track

The business of sustainability continues to evolve rapidly. Here are the most important changes to expect in the coming year.

By:  Elsa Wenzel
View the original article here

Sophia Davirro/GreenBiz

With COP28 recent in the rearview mirror, 2024 represents a clear and critical inflection point for confronting the climate crisis. New rules in the European Union and in California, the world’s fifth-largest economy, will change how global businesses report risks, purchase energy and manage supply chains. The effects of the Inflation Reduction Act in the U.S. are still emerging: 175 nations are hashing out the first global treaty to end plastic waste.

Below are some defining moments that will drive change in the business of sustainability in the coming year. 

Carbon

Expected U.S. SEC climate-related disclosures in April will require companies to report their GHG emissions.

The U.S. Office of Fossil Energy and Carbon Management, part of the Department of Energy, announces winners in February of its carbon dioxide removal purchase pilot prize and will publish details for corporate sustainability teams’ own carbon removal due-diligence processes.

New guidance from the Science Based Targets initiative on the use of environmental attribute certificates, including carbon credits, in decarbonization goals should come out by summer.

By the end of 2024, companies subject to California’s new Climate Corporate Data Accountability Act (SB253) will need to establish processes for auditing their 2025 emissions ahead of 2026 reporting.

Finance and ESG

A new proposal may emerge in the spring from the U.S. Securities and Exchange Commission (SEC), after it again delayed its climate change disclosure rulemaking.

Changes to the EU’s Sustainable Finance Disclosure Regulation (SFDR) 2.0 are likely following a September 2023 review.

Sometime in 2024, the U.S. Federal Trade Commission’s updated Green Guides are expected to update what “greenwashing” means in business and marketing.

Nature and biodiversity

The EU’s Corporate Sustainability Reporting Directive (CSRD), requiring companies to disclose their risks from environmental and social factors, takes effect Jan. 1.

COP16, the 16th Conference of the Parties to the Convention on Biological Diversity, will take place in Colombia from Oct. 21 to Nov. 1.

Revised or updated National Biodiversity Strategies and Action Plans (NBSAPs), including national targets, are due by COP16. 

By Dec. 30, operators and traders must prove deforestation-free sourcing for targeted commodities in the EU market. That’s the EU Deforestation Regulation (EUDR) compliance deadline.

Food and agriculture

The EU CSRD goes into effect as 2024 begins, influencing supply chain impact disclosure and bringing new evidence of deforestation.

Supply chains risk disruptions if the U.S. Farm Bill continues to stall in Washington in 2024.

Watch for the next steps from the hundreds of nations that signed sustainable food declarations at COP28.

Transport

The U.S. Departments’ of Treasury and Energy rules go into effect, barring vehicles with battery components from a “foreign entity of concern” from consumer tax credits. 

The IRS expands its EV tax benefit by letting consumers choose between claiming a credit on their tax returns or using the credit to lower a car’s purchase price.

The ReFuelEU aviation initiative goes into effect Jan. 1 to advance sustainable aviation fuels (SAF) in the European Union. It also requires aircraft operators and EU airports to work towards emission reductions and to ensure a level playing field for airlines and airports.

In January, the EU extends its cap-and-trade Emissions Trading System (EU ETS) to regulate CO2 from large ships of any flag entering its ports.

The U.S. Department of Energy will release an updated Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model by March 1.

Circular economy

A hoped-for Global Plastics Treaty in 2024 moves forward with INC-4 meetings expected in April in Ottawa and INC-5 by November in Korea.

California, Maine, Oregon and Colorado are working on enforcement rules and other fine print for their new extended producer responsibility (EPR) packaging laws.

EU battery regulations are gradually being introduced, encouraging a circular economy for batteries.

Energy

At COP28, the U.S. announced new rules to cut methane emissions in oil and gas production, likely to change the energy cost equation. Watch for progress from 150 countries pledging two years ago to cut methane by 30 percent by 2030.

The Biden administration will be giving out $7 billion for its Regional Clean Hydrogen Hubs (H2Hubs).

2024 will be a watershed year for microgrids moment: Interconnection backlogs are creating a new value-add for microgrids, especially as the macrogrid can’t keep up with electricity demand.

Buildings

Watch the 28 countries agreeing at COP28 for “near-zero” buildings by 2030 through the Buildings Breakthrough.

Applications are due and funding will be announced for the EPA’s $27 billion Greenhouse Gas Reduction Fund, backing climate tech and moving money into communities.

Applications for the EPA’s Environmental Product Declaration (EPD) grants are due Jan. 16 from manufacturers.

What’s ‘Greenwashing’ and How Can I Avoid It?

By:  Jacqueline Poh
View the original article here

Over the last decade, companies and investors have come to pay more attention to environmental concerns, often with a goal of offering “green” products or making “green” investments. But the companion of green is often what’s known as greenwashing. In some countries, regulators are trying to clean up the field, launching investigations and levying fines. They have the backing of some advocates of environmentally minded investing worried that greenwashing’s taint may undermine the field.

1. What is greenwashing?

It’s the use of misleading labels or advertising to create an undeserved image of environmental responsibility. Here are some eamples:

  • In December, the UK’s antitrust regulator began an investigation of Unilever Plc, the maker of Dove soap and Cif cleaner, for allegedly overstating the environmental qualities of certain products.
  • Fashion companies Asos and Boohoo and airlines such as Air France-KLM, and Deutsche Lufthansa AG were told by regulators to discontinue misleading ads that made air travel seem more eco-friendly than it is.
  • In investing, the UK’s Financial Conduct Authority rolled out a framework in November designed to protect retail investors from misleading claims by firms with so-called ESG funds — where investment decisions are shaped by environmental, social or governance factors.
  • In the US, Deutsche Bank AG’s DWS asset management arm agreed in September to pay a total of $25 million to settle Securities and Exchange Commission probes into alleged greenwashing and anti-money laundering lapses. The penalties included $19 million for “materially misleading statements” about how the bank incorporated ESG factors into research and investment recommendations.

2. What’s the incentive for greenwashing?

The ultimate attraction is the favorable image companies project across to clients, investors, shareholders, lenders and even potential employees. But different players have different reasons for exaggeration. When companies fudge on something they’re selling, it’s because they want environmentally minded consumers to be drawn to their products. When they’re borrowing money, they may be chasing a “greenium” — the money they can save by qualifying for the better terms lenders might extend to green or social projects or to ones with ESG goals. Brazil raised $2 billion in the bond market in November 2023 with proceeds earmarked for green and social work, and the debt was priced lower than initial guidance – meaning the Amazon forest nation is paying lower interest rates, compared with a conventional bond. And investment managers might put a greener label than is warranted on a fund to draw in more assets.

3. How big a problem is it?

In 2022, Bloomberg News analyzed more than 100 bonds worth almost $70 billion tied to issuers’ ESG credentials that were sold by global companies to investors in Europe. The analysis found that the majority were tied to climate targets that were weak, irrelevant or even already achieved. Some companies promised to do no more than maintain their existing ESG ratings. And some of the fastest-growing areas of ESG financing involve so-called sustainability-linked loans (SLL) (and similar bonds) in which the connection between environmental labels and environmental goals can be tenuous.

4. How does sustainability-linked debt work?

Sustainability-linked bonds and sustainability-linked loans are signed with commitments from borrowers to achieve certain environmental or social targets, but those goals may be changed in an increasing number of cases. The more flexible agreements even allow issuers to adjust those targets under certain conditions without incurring a penalty. Issuers argue that they have to look for ways to cope with increasingly volatile markets in which key ESG parameters such as energy prices become harder to predict. Then there’s the “sleeping” sustainability-linked debt where financing has an ESG label but with no immediate sustainability targets. Other approaches push responsibility even further out: Bank of China Ltd.’s so-called re-linked bond sold in 2021 is tied to the performance of a pool of sustainability-linked loans made to its clients — that is, not to anything BOC is or isn’t doing in ESG terms, but to the ESG performance of the clients who have taken out those loans.

5. Who’s checking up?

There are dozens of ESG rating and data providers globally, which can provide some assurance that companies and debt issuers are doing their part in sustainability. But private ratings systems can be unreliable and corporate reporting is spotty and hard to compare. All of this greenwashing detective work would be easier if investors and the public had a standardized approach and a robust set of data to compare. Here’s some of what governments and other organizations are doing:

  • Hong Kong, Japan, South Korea, India, Singapore, the UK and EU have issued or proposed rules for ESG score providers, though the rules are only mandatory in the EU and India. The UK Financial Conduct Authority, meanwhile, has unveiled its Sustainability Disclosure Requirement ensuring investment products are accurately labeled or presented.
  • The US SEC is working on getting companies to report on their greenhouse gas emissions and other climate matters.
  • The EU enforced the Corporate Sustainability Reporting Directive in January 2023 which requires companies to disclose risks and opportunities arising from social and environmental issues. For the debt markets, the European Council adopted a green bond standard in October 2023 that specifies where proceeds will be invested and which activities are aligned with the EU taxonomy.
  • Financial bodies, including the International Capital Market Association which oversees the international debt capital markets, and global loan associations have drafted guidelines for ESG debt such as sustainability-linked instruments, green and social financing.

6. Is it just environmental misconduct that’s considered greenwashing?

No. Social and governance aspects have grown to be just as crucial as companies’ environmental efforts, especially since the #MeToo and Black Lives Matter movements began making an impact on consumers’ spending. Many corporations are using their annual sustainability reports to showcase how fair they are in equality employment or what they did to improve employee wellbeing. Given that some of these goals are hard to measure in areas where little data is available, there’s a risk in overstating the results. Of the $1.4 trillion of sustainability-linked debt with disclosed ESG goals, only $352 billion was tied to social objectives, according to BloombergNEF data.

7. How can I avoid investing in greenwashing?

Here are some questions to ask yourself:

  • How ambitious are a company’s goals? Are they integral to its core business, or just superficial commitments? Is the company just promising to do something it would be doing anyway?
  • How specific is the timeframe? Are the goals set annually, or in a way that allows for easy monitoring?
  • Are companies looking at the full “scope” of their emissions, including the carbon released when customers use their products?
  • How much do their plans rely on the kinds of carbon “offsets” that have come under fire for not living up to their promises of environmental benefits?
  • Is there a way to check on companies’ claims, such as in an evaluation by an impartial ESG data- or ratings-provider?
  • Is a company making information about their sustainability goals accessible in a transparent and timely way?