Month: October 2023

The Importance of Energy Storage in Future Energy Supply

Reviewed by: Olivia Frost
View the original article here

Energy is vital in the modern world, powering everything from transportation and production to communication and daily services.

Image Credit: Saint-Gobain Tape Solutions

As energy consumption continues to rise with digitalization, changes in mobility, and globalization, sophisticated grids have been developed to provide energy wherever and whenever needed. However, current and past energy consumption has come at a price.

The intensive use of fossil fuels and other limited resources has led to negative impacts, and the need for a more sustainable energy supply has become one of the biggest challenges facing humankind.

Renewable Energy Production on the Rise

Issues related to health, environment, economies, geopolitical risks, dependencies on limited resources, and advancements in sustainable energy production have prompted a reevaluation of energy policy.

According to the EMBER Global Electricity Review 2022, wind and solar reached a record 10% of global electricity in 2021, with all clean power totaling about 38% of the supply.

Renewable energy supply is an important step in reducing the CO2 footprint and mitigating climate change and the consequences caused by the phenomenon. Tapes are essential in helping wind and solar energy supply get into pole position in renewable energy production and grow even further.

Using these tapes in composite molding for wind turbine blades enables manufacturers to protect molds, tool surfaces, and blades, and also helps to reduce cost, effort, and labor time.

Saint-Gobain’s special PET or PTFE tapes, such as the CHR® M-Series or CHR 2255, are designed to withstand high temperatures and can be re-used multiple times, making them an efficient and sustainable solution for large-scale wind turbine production.

These continuous process improvements are crucial to making renewable energy production more efficient and cost-effective.

Using tapes with low CoF can help reduce the rework needed and improve downstream processes’ quality, making wind turbine manufacturing more efficient. The production of larger and more efficient wind turbines will play a significant role in increasing renewable energy capacity and reducing the reliance on fossil fuels.

Figure 1. Wind and solar energy production as part of modern energy supply. 
Image Credit: ShutterStock/liyuhan

Renewable energy production is just one piece of the puzzle. To be consumed, renewable energy often needs to be transformed and transported.

Saint Gobain’s Kapton® and Nomex® tapes with high mechanical, electrical, temperature, and chemical resistance are crucial in ensuring a trouble-free energy supply through new generations of transformers and generators.

UL-recognized Kapton® and Nomex® tapes offer excellent oil compatibility, which is crucial for boosting the performance and longevity of transformers and generators. As a result, maintenance efforts in electro-mechanical applications can be minimized, and the equipment can operate at peak efficiency for longer periods.

Renewable energy sources may not be available around the clock, which creates intermittency.

Renewable electricity generation does not always align with peak demand hours, causing grid stress due to fluctuations and power peaks. Unpredictable weather events can disrupt these technologies.

The current infrastructure is mainly designed to support regional fossil fuel and nuclear plants. As a result, renewable energy often needs to be transported over long distances from the remote areas where it is produced to the regions it is consumed.

Renewable energy sources, such as solar and wind power, can be unpredictable and generate surplus energy. Efficient storage systems are needed to store excess energy during low demand and release it when demand is high.

Image Credit: Saint-Gobain Tape Solutions

The Importance of Energy Storage in Future Energy Supply

Sustainability is a crucial factor for economic growth, and it will continue to be an important consideration in the future.

Demand for clean energy drives sustainable technology development that will impact future energy and the environment.

Stationary energy storage is essential in transitioning to a sustainable energy system with higher shares of renewable energy.

Energy storage has become a ubiquitous component of the electricity grid, leading to a boom in storage capacity worldwide as electricity is expected to make up half of the final energy consumption by 2050.

Figure 2. Global cumulative energy storage installations 2015-30, trends and forecast. Image Credit: BloombergNEF website, accessed July 2022.

Efficient and Safe Energy Supply with Stationary Energy Storage

Figure 3. Energy storage system in power grids.
Image Credit: Shutterstock/Dorothy Chiron

Optimized energy storage systems ensure grid stability and on-demand availability, preventing blackouts. They are essential in modern smart grids, meeting changing energy demands, such as electric mobility.

Energy storage provides flexibility and opportunities for remote areas using various technologies, including electro-mechanical, chemical, thermal, and electrochemical (batteries).

Advancements in battery technologies and their decreasing costs have enabled the growth of stationary energy storage. Improved energy density, cycle life, and safety have made batteries more efficient and reliable, while lower costs have made them more accessible.

Hydroelectric dams store bulk energy in the long term, while short-term energy storage is achieved through various technologies, such as electric batteries, flow batteries, flywheel energy storage, and supercapacitors.

These technologies offer different characteristics and are suitable for various applications, providing flexibility, stability, and reliability to the energy system.

Lithium-ion (Li-ion) batteries are the most widely used technology for grid-oriented rechargeable electrochemical battery energy storage systems (BESS). Sodium-ion batteries, although less common, are being developed as a potential alternative.

Sodium-ion batteries for BESS are a promising option due to the abundance of sodium resources but are still in the early stages of development. They have the potential as a cost-effective alternative to Li-ion batteries, with lower power density.

Lithium-ion batteries are well-established in the automotive industry, with higher energy density than sodium-ion batteries.

Lithium-ion batteries require high-end materials and thermal protection but are a good solution for the short-duration range. They have the potential for optimization in terms of energy density, safety, loading cycles, and cost.

As battery technology advances, materials are evolving to improve the energy density, cycle life, safety, and cost of Li-ion batteries.

Compression Pads That Combine Increased Loading Cycles and Energy Density

Compression pads with a low compression force deflection (CFD) curve can improve the lifetime, durability, and performance of Li-ion batteries in energy storage systems.

They distribute forces evenly, prevent internal damage, and reduce the risk of thermal runaway. Optimal pressure on cells can maximize loading cycles and extend battery life.

Micro-cellular polyurethane foams, such as Norseal® PF100 or PF47 Series, are designed for high energy density and optimal thickness.

They enable more cells to be packed into a single unit, increasing performance and allowing for the creation of battery energy storage systems with maximized energy density and minimized space requirements.

Maintaining a sealed environment for batteries is crucial to protect them from outside elements. Saint Gobain provides a range of battery pack housing options that include foam-in-place gasketing, silicone foam rubbers, butyl-coated PVC, and micro-cellular PUR foams.

Maximize Safety to Enhance Battery Pack Performance

Safety is critical in Li-ion battery-based energy storage as flammable materials are used to maximize performance.

Thermal Runaway Protection materials enhance the safety and reliability of battery modules and packs for BESS systems by providing thermal insulation, fire-blocking characteristics, and excellent compression set resistance.

The Norseal TRP Series prevents adjacent cells from experiencing exothermic reactions and stops thermal runaway propagation, protecting battery systems. This technology plays a crucial role in enhancing the safety and reliability of battery energy storage systems.

To regulate battery temperature, improve functionality, and extend battery life in Li-ion batteries, it is important to control heat. The ThermaCool® R10404 Series Thermal Interface Materials effectively remove excess heat, ensuring the safe and efficient operation of battery energy storage systems under demanding conditions.

The thermally conductive gap fillers act as heat sinks, allowing heat to flow away from batteries.

High-End Materials to Create Cost-Effective BESS Solutions

These solutions enable customers to design large BESS systems that are safe and reliable for long-term operation in harsh conditions. By reducing the risk of thermal runaway, this technology enhances the safety and efficiency of battery energy storage systems.

More cells in a battery pack can boost performance and longevity by offering higher energy storage capacity in a smaller space, though this can increase the risk of cell imbalance and failure.

This battery combination is ideal for decentralized and cost-effective energy production and storage in industrial buildings and private households with solar collectors.

Solutions, Know-How, and Capabilities for Next-Level BESS

Tailored materials cater to energy storage systems of various sizes and types by fulfilling their specific cushioning, compression, protection, and insulation needs. This supports the transition to a sustainable energy supply.

Specialized materials and expertise in high-performance battery pack development can aid in designing Li-ion BESS for stationary grid energy storage

Could sand be the next lithium?

By:  Shira Rubin
View the original article here

A cadre of start-ups are building batteries that can store renewable energy in natural materials such as sand, salt and rock.

(Illustration by Emily Sabens/The Washington Post; iStock)

TAMPERE, Finland — When Russia halted gas and oil exports to Europe following its invasion of Ukraine, hundreds of millions of citizens agonized over the prospect of a winter without enough heating and a summer without enough air conditioning.

But the Kremlin’s wartime strategy to shut the taps on its fossil fuels has coincided with, and also catalyzed, a critical sector for the clean energy transition — batteries made from inexpensive and abundant natural materials that store heat.

The use of sand, salt, heat, air and other elements as energy banks dates back centuries. The walls of ancient Egyptian homes captured solar heat during the day and released it during cool desert nights. Indigenous peoples across the Americas valued adobe — a composite of earth, water, and other organic materials like straw or dung — as a preferred construction material for its ability to do the same.

For modern civilizations whose industrial development has been powered by the combustion of fossil fuels, these materials offer a revolutionary premise: “Nothing is burned,” said Tommi Eronen, chief executive of Polar Night Energy, a Finnish start-up running the world’s first commercial-scale sand battery.

Natural batteries are meant to enable countries to take advantage of prodigious supplies coming from wind turbines and solar panels, when the sun isn’t shining and the wind isn’t blowing. The price of renewables remains below the cost for fossil fuels —especially after a Russian fuel pullback drove prices across Europe to record highs — but the green energy revolution still faces a hugeobstacle: a lack of long-term, cost-efficient renewable storage.

At Polar Night Energy’s facilities in the city of Tampere and the nearby town of Kankaanpää, hulking steel vats hold heaps of sand, heated to around 1,000 degrees Fahrenheit. That stored energyhelps to smooth out power grid spikes and back up district heating networks, keeping homes, offices, saunas and swimming pools warm. The heat keeps flowing, even in remote areas, even as Russian fossil fuel supplies dwindle.

“Sand has almost no limits,” said Ville Kivioja, Polar Night Energy’s lead scientist, speaking over the whirring sound of the substance circulating. “And it’s everywhere.”

A Polar Night Energy sand battery. (Martti Tikka)

How natural batteries work

The sensors and valves that monitor the sand battery’s performance are relatively high-tech, said Kivioja, but, by design, the battery itself is simple.

The sand is trucked in from anywhere nearby — a demolished building site or sand dunes, for example — and costs less than a euro per ton. It is dumped into a giant vat, or “battery,” which is consistently kept hot, or “charged.”

The renewable energy from solar panels and wind turbines is converted into heat by a resistance heater, which also heats the air that swirls through the sand. A fan circulates the flow of heat continuously, until it’s ready to use. Like a boulder in the sun, the sand remains hot even after sundown — except unlike the boulder, the sand never gets cold because it’s insulated by the enormous vat. Even when the battery level is low, the temperature remains above 200 degrees Fahrenheit; when it is full, it can surpass 1,000 degrees.

The sand can hold onto the power for weeks or months at a time — a clear advantage over the lithium ion battery, the giant of today’s battery market, which usually can hold energy for only a number of hours.

Polar Night Energy prefers to use sand or sand-like materials that are not suitable for construction industry. This enables the usage of materials that are locally and commonly available or even considered as waste. (Polar Night Energy)

A natural battery rush

Unlike fossil fuels, which can be easily transported and stored, solar and wind supplies fluctuate. Most of the renewable power that isn’t used immediately is lost.

The solution is storage innovation, many industry experts agree. In addition to their limited capacity, lithium ionbatteries, which are used to power everything from mobile phones to laptops to electric vehicles, tend to fade with every recharge and are highly flammable, resulting in a growing number of deadly fires across the world.

The extraction of cobalt, the lucrative raw material used in lithium ion batteries, also relies on child labor. U.N. agencies have estimated that 40,000 boys and girls work in the industry, with few safety measures and paltry compensation.

These serious environmental and human rights challenges pose a problem for the electric vehicle industry, which requires a huge supply of critical minerals.

So investors are now pouring money into even bigger battery ventures. More than $900 million has been invested in clean storage technologies since 2021, up from $360 million the year before, according to the Long Duration Energy Storage Council, an organization launched after that year’s U.N. climate conference to oversee the world’s decarbonization. The group predicts that by 2040, large-scale,renewable energy storage investments could reach $3 trillion.

That includes efforts to turn natural materials into batteries.Once-obscure start-ups, experimenting with once-humble commodities, are suddenly receiving millions in government and private funding. There’s the multi-megawatt CO2 battery in Sardinia, a rock-based storage system in Tuscany, and a Swiss company that’s moving massive bricks along a 230-foot tall building to store and generate renewable energy. One Danish battery start-up, which stores energy from molten salt, is sketching out plans to deploy power plants in decommissioned coal mines across three continents.

“In some ways, these are some of the oldest technologies we have,” said Kurt Engelbrecht, an associate professor who specializes in energy storage at the Danish Tech University.

He and his colleagues have long been advocating for national decarbonization programs to integrate simple, natural based storage solutions,he saidbut clean batteries only began receiving real market attention as a result of energy crises of recent years.

The war in Ukraine and the subsequent political crisis over Russian oil and gas exports, was the final “tipping point,” Engelbrecht said.

The geopolitical benefits of natural batteries

Natural batteries will help renewables eclipse fossil fuels and free countries from geopolitical challenges, such as Russia’s Ukraine invasion, said Claudio Spadacini, founder of Italian company Energy Dome. The company has been considering selling a version of its CO2-based battery to clients in the United States.

“Renewables are democratic,” he said. “The sun shines everywhere and the wind blows everywhere, and if we can exploit those sources locally, using components that already exist, that will be the missing piece of the puzzle.”

But in order to succeed, natural batteries will need to provide the same kind of steady power as fossil fuels, at scale.Whether that can be achieved remains to be seen, say energy experts.

And the industry may be subject to the same pitfalls that loom over the renewables energy sector at large: Projects will need to be constructed from scratch, and they might only be adopted in developed countries that can afford such experimentation.

Lovschall-Jensen, the CEO of a Danish molten salt-based storage start-up called Hyme, says the challenge will be maintaining the same standards to which the modern world has become accustomed: receiving power, on demand, with the flip of a switch. He believes that natural batteries, though still in their infancy, can serve that goal.

“As a society that’s going away from fossil fuels, we still need something that’s just as flexible,” he said. “There’s really no other option.”