clean transportation

Hubs and spokes: Extending the reach of hydrogen hubs through clean transportation corridors

Written by: Jonathan Lewis and Anna Menke
View the original article here

Low-emissions hydrogen is a critical component of the climate change solution set, and it is likely to play a significant role in affordably achieving full, economy-wide decarbonization by midcentury. Electrification will achieve much of the decarbonization needed, but more than 80% of final energy use in the U.S. comes from fuels. Many existing fuel uses can be electrified, but electrifying some hard-to-abate sectors of the economy (such as long-haul heavy-duty trucking, marine shipping, and ironmaking) may be either commercially impossible or prohibitively expensive. For these sectors, we will need zero-carbon fuels, namely hydrogen and ammonia, to reach full decarbonization. Accordingly, the International Energy Agency (IEA) projects that the world’s demand for hydrogen could increase by almost 500% between 2020 and 2050.

To catapult the United States on a path towards commercial scale clean hydrogen production, the 2021 Infrastructure Investment and Jobs Act (IIJA) allocated $8 billion for the Department of Energy (DOE) to fund at least four Regional Clean Hydrogen Hubs — or H2 Hubs — across the country. The program is designed to demonstrate viability of new production and end-use technologies for clean hydrogen, and to drastically bring the cost of production down.  

A clean hydrogen hub is a co-located network of infrastructure needed to produce, transport, store, and use clean hydrogen in a functional regional market. The program intends to demonstrate localized production and end use of hydrogen and to create a connected synergistic hydrogen economy across the United States.

In parallel to DOE’s H2 Hubs program, DOE and the Department of Transportation (DOT) are pursuing several additional measures to promote the deployment of hydrogen-fueled trucks and ammonia-powered marine vessels, including the IIJA’s National Alternative Fuel Corridors Program — a piece of the $2.5 billion Charging and Fueling Infrastructure competitive grant program that is designed to support the build-out of clean charging and fueling infrastructure projects along designated alternative fuel corridors of the National Highway System.  

Clean transportation corridors include routes for heavy-duty trucks that run on hydrogen to transport their freight across multiple states, provinces, or even countries, as well as transoceanic shipping routes for vessels that run on ammonia. In the future, clean corridors will also include airline routes serviced by aircraft that are powered by hydrogen or other zero-carbon fuels. Clean transportation corridors will be necessary to turn H2 Hubs from islands into a network, allowing hydrogen and other resources to move between hubs and simultaneously creating a steady demand base for hydrogen to fuel the transportation corridors themselves.  

Moving from competition to connection between H2 Hubs  

CATF has previously written about the elements that individual hubs should prioritize as they develop their proposals to DOE, including low-carbon production pathways, hard-to-decarbonize end uses, the creation of community and local environmental benefits, and long-term economic viability.  

On April 7, 2023, final applications were submitted from hub developers across the country hopeful to receive funding from the Department of Energy. The application process for the DOE Regional Clean Hydrogen Hubs program is long and applicants have recently entered a new phase – the waiting period between application submission and award negotiations and selections. Until this point in the process, the focus and feel between hub hopefuls has been competitive with more than 20 known hub efforts competing for $8B in funding to be spread amongst the 4 to 10 hubs that will be selected by DOE. As award selections and negotiations evolve over the spring, summer, and into the fall, we expect to see more tangible production proposals, off-taker agreements, robust community engagement efforts, and greater collaboration and coordination between the various hub efforts.  

In addition to getting specific within each hub proposal, this phase of the program creates an opportunity for hub developers and the Department of Energy to start thinking collaboratively.  Proactive planning to connect hubs can strengthen individual proposals and improve the likelihood of long-term success for the collective H2 Hubs program. As the Department of Energy’s Clean Hydrogen Liftoff report points out, the development of ‘midstream infrastructure’ will be crucial to getting hydrogen to commercial scale. For the H2 Hubs program, this midstream infrastructure will include hydrogen storage, carbon storage, and transportation infrastructure. The ability to move hydrogen efficiently and safely between hubs — while minimizing hydrogen leaks throughout the process — will be an essential part of the H2 Hubs program. There is the potential to create a national network that simultaneously allows for distribution and hydrogen refueling across the country while bolstering demand for hydrogen and creating benefits for communities.  

The importance of linking clean transportation corridors and H2 Hubs 

Clean transportation corridors have the potential to bolster the economic viability of H2 Hubs and create benefits to communities. To date, Congress and the U.S. DOE have focused primarily on supply-side policies for hydrogen; including the Regional Clean Hydrogen Hubs Program and the Hydrogen Production Tax credit (45V). Recently, focus has begun to shift to demand-side measures that could help give certainty to hub developers that off takers will be there for the hydrogen they produce. DOE and DOT’s investments in and development of clean, hydrogen-fueled transportation corridors will aid in demand-side certainty for H2 Hubs in two ways:  

  1. Clean transportation corridors that support trucks and marine vessels that run on hydrogen or hydrogen-based fuels will broaden the market for low-carbon hydrogen by increasing demand beyond the industrial off takers that are typically located next door to hydrogen production sites. 
  2. The corridors will also expand the geographic reach of H2 Hubs by extending demand for decarbonized hydrogen along spokes — i.e., highways and/or marine shipping routes — that connect each hub region to other cities and ports.     

Additionally, clean transportation corridors have an important role not only in curbing harmful CO2 emissions but also in curbing conventional air pollutants from diesel powered trucking which disproportionately affect environmental justice communities across the country. As H2 Hubs evaluate the benefits they may be able to create for communities near and far, they should consider the transportation routes stemming from their hubs that could transition to be hydrogen-fueled clean transportation corridors and should begin benchmarking the public health benefits that may accrue to communities as a result.  

The first awardees of the DOE and DOT clean transportation corridors grant program were announced in February and include several awardees focused on developing hydrogen-fueled clean transportation corridors:  

  • CALSTART: East Coast Commercial ZEV Corridor along the I-95 freight corridor from Georgia to New Jersey.  
  • Cummins Inc.: MD-HD ZEV Infrastructure Planning with Focus on I-80 Midwest Corridor serving Indiana, Illinois, and Ohio.  
  • GTI Energy: Houston to Los Angeles (H2LA)–I-10 Hydrogen Corridor Project.  
  • Utah State University: Wasatch Front Multi-Modal Corridor Electrification Plan for the Greater Salt Lake City Region.  

CATF sees a key opportunity for H2 Hubs and clean corridors grant recipients to coordinate to develop an interconnected hydrogen network across the United States.  

Imagining hubs connected via clean transportation corridors  

Given that around half of the hydrogen production in the United States currently takes place in the Gulf Coast, let’s assume the example of a hydrogen hub depicted in the graphic above is in the Houston region. If a Houston-based hub were to be selected, there would be at least three and at most nine other hydrogen hubs under development in the United States per the requirements of IIJA’s Regional Clean Hydrogen Hub provision. Meaning, the hypothetical hub in Houston isn’t the only one of its kind, and a hydrogen-powered truck that fuels up in Houston isn’t limited to conducting only local deliveries. There are other places it could carry its freight to, if those places — and the routes along the way — also have hydrogen fueling capacity.  

If a hub in Chicago and the Upper Midwest/Great Lakes region was also selected, the ability to move goods between Houston and Chicago and points in between would improve the use-case for hydrogen trucks purchased in those regions — which in turn would benefit hydrogen truck manufacturers, producers of low-carbon hydrogen, and, most pertinently, air quality and the climate. 

The success of this Houston-Chicago clean hydrogen corridor could be replicated with corridors that connect those regions to other potential hosts of federally backed regional clean hydrogen hubs. Once there are hydrogen production facilities in places like Los Angeles, New Orleans, and New York, along with hydrogen fueling stations along the interstate highways that connect them, the viability of hydrogen-fueled trucks would improve dramatically, the market for low-emissions hydrogen would increase, and both sectors would benefit from growing economies of scale. 

The success of this Houston-Chicago clean hydrogen corridor could be replicated with corridors that connect those regions to other potential hosts of federally backed regional clean hydrogen hubs. Once there are hydrogen production facilities in places like Los Angeles, New Orleans, and New York, along with hydrogen fueling stations along the interstate highways that connect them, the viability of hydrogen-fueled trucks would improve dramatically, the market for low-emissions hydrogen would increase, and both sectors would benefit from growing economies of scale. 

Concluding: How DOE and hub developers can support the development of clean transportation corridors  

Building synergistic linkages between H2 Hubs and clean trucking and shipping corridors requires multi-market investments by fuel providers, fleet owners, and other market participants; support and coordination from federal and state agencies; and constructive input and oversight from communities, NGOs, and universities. 

As discussed above, DOE, DOT, and other U.S. government agencies are working on multiple fronts to implement key provisions in the IIJA and the Inflation Reduction Act that will support the deployment of clean energy production and utilization technologies including hydrogen and zero emissions vehicles. More can be done, however, to ensure that the H2 Hubs and clean corridors programs are well coordinated. The seven grant recipients of DOE and DOT’s program “to accelerate the creation zero-emission vehicle corridors” cover highway systems across the country and meanwhile, nearly every state in the U.S. is represented in the hub projects proposed to DOE’s H2 Hubs program. The extent to which the seven funded corridor efforts match up geographically with regional hydrogen hub efforts is not yet known, because the Regional Clean Hydrogen Hubs program funding recipients will not be announced until later this year. 

may proceed irrespective of DOE funding decisions. Accordingly, CATF is connecting with DOE, hydrogen hub developers, trucking companies, and others to spotlight the opportunities for constructively linking clean corridor development and H2 Hub development. We’re encouraging H2 Hub project developers to look for ways to integrate clean corridor plans into their strategy, in part by involving entities like Cummins, GTI Energy, CALSTART, and Utah State University that received initial clean corridor grants from DOE and plan to support hydrogen refueling infrastructure as part of their projects.    

Given the likely importance of hydrogen to the decarbonization of long-haul heavy-duty trucks, DOE and DOT should account for H2 Hub development when determining when and how to expand the clean corridors program, and the agencies should prioritize the development of hydrogen fueling infrastructure along routes that span between H2 Hub regions. Additionally, H2 Hub applicants and DOE should consider how clean corridors can be leveraged to improve demand-side certainty and to create meaningful benefits for communities. As selections are announced later this fall, CATF looks forward to collaborating with clean corridor grant recipients, H2 Hub awardees, and other stakeholders to support the development of a connected clean hydrogen ecosystem across the United States.  

The electric car market is growing 10 times faster than its dirty gasoline equivalent

There will be two million electric cars on the road by the end of 2016.

Written by: Alejandro Dávila Fragoso
View the original article on ThinkProgress

evDespite low oil prices, plug-in electric vehicles (EV) are charging forward worldwide, with more than 2 million expected to be on the roads by the end of 2016, according to recent market figures.

Around 312,000 plug-in electric cars were sold during the first half of 2016, according to analysts at EV Volumes — a nearly 50 percent increase over the first half of 2015.

The rise in sales is attributed to a growing Chinese market, followed by sales in Europe and the United States, where Tesla Motors Co. is now dominating the luxury sedan market, according to recent reports.

And though EVs are a fraction of the global vehicle stock — less than 1 percent— the industry is growing about 10 times faster than the traditional vehicle market.

“What we have seen over the past few months is a complete culture change.”

This increase could be significant for public health and the environment in the United States and elsewhere. In the United States, transportation is now topping the electricity sector as the largest source of carbon dioxide emissions, a key factor in human-caused climate change.

Moreover, fossil-fuel vehicles are known to be major contributors of air pollution associated with asthma, allergies, cancer, heart conditions, and premature death, according to the United Nations. And while EVs can reduce air pollution in cities, they also mean less oil extraction, which comes with air pollution and environmental issues of its own.

Right now, EVs’ presence is too small to affect fuel consumption and greenhouse gas emissions from the transportation sector, according to a 2016 International Energy Agency (IEA) report. However, the IEA noted this could soon change, with countries like Norway, the Netherlands, and China boldly turning to EVs as they aim to slash emissions in the next few years.

Norway, a small but rich nation, is now leading the world in EVs. One in three new cars sold there is electric, and that proportion is increasing due to tax breaks and investment in charging infrastructure, The Guardian reported. The Netherlands is following closely, since, like Norway, it wants to phase-out fossil-fuel cars within the next decade. According to a Transport & Environment report released Thursday, EV sales in Europe doubled last year to 145,000.

In China, the rise of EVs is noteworthy, too. One in four electric cars sold worldwide is sold in China. “What we have seen over the past few months is a complete culture change,” said Greg Archer, clean vehicles director at Transport & Environment.

This growth is expected to continue around the world. Some studies suggest that by 2030, EVs could account for two-thirds of all cars in wealthy cities like London and Singapore. That is likely to happen thanks to stricter emissions rules, consumer demand, and falling technology costs.

Batteries, a major factor behind high EV costs, are getting 20 percent cheaper every year, according to EV Volumes.


The State of the Electric Car Market in 4 Charts and Graphs

, LEAD POLICY ANALYST, CLEAN VEHICLES
View the original article here.
I’m guessing that over the past 3 months (or more), your news feed has been dominated by election-related stories. So you may have missed the recent good news about the electric vehicle (EV) market in the United States. To bring you up to speed (and provide a brief break from election hullaballoo) here are 4 graphs that explain what’s been happening in the world of EVs.

Graph 1 : EV sales are charging ahead (see what I did there?)

EV sales in the US just hit a new record. Over 45,000 EVs were sold in the third quarter of 2016, up more than 60 percent from the same time a year ago.

2

The sales increase can be partly attributed to the second generation Chevy Volt, which became widely available in March 2016 and includes 50 miles of electric range along with a backup gasoline engine. Plug-in hybrid electric vehicles (PHEVs) like the Volt allow many drivers to do all of their normal daily driving purely on electricity, without any fear of running out of juice because they can just fill up with gas if the batteries are drained.

Confused about the difference between PHEVs like the Volt and battery electric vehicles (BEVs) like the Nissan LEAF? Check out this explainer post.

Graph 2 : EVs are selling despite lower oil prices

EV sales reached this new high-water mark despite spotty availability of EV models across most of the country and continued lower-than-average oil prices, a factor often cited as hampering EV sales.

3

Low gas prices do take some of the spotlight off of EVs, despite their lower operating costs compared to gas-powered vehicles. But even with gas hovering around $2.30 a gallon, driving on electricity remains cheaper.

The US Department of Energy estimates that driving on electricity is like paying $1.15 per gallon of gas, and electricity prices have historically been much more stable and predictable than gasoline.

Graph 3: Sales would be even higher if they were more widely available

Generally speaking, EVs are not readily available outside of California. The current lack of availability is due, in part, to the fact that a major policy pushing automakers to offer EVs—theCalifornia Zero Emission Vehicle Program—does not require automakers to sell EVs outside of California (yet).

4

The requirements of the California program are set to expand to 9 additional states (ME, CT, VT, NY, MA, RI, MD, NJ, OR) in 2018, which together made up 28 percent of combined vehicle sales in 2015. So, the expanded role of policy pushing automakers to sell EVs in major vehicle markets outside of California will likely accelerate aggregate EV sales over the next couple years.

Graph 4 : More automakers are getting in the EV game

2017 should be an exciting year for EVs. Chevy is about to drop the Bolt, an all-electric car with over 200 miles of range and a price tag of around $30,000 after the federal tax credit. Toyota is releasing a new Plug-in Prius, now called Prius Prime, and recent pricing announcements put the cost similar to the price of existing Prius models.

Also in 2017, Tesla is aiming to ship their much-anticipated Model 3, and Hyundai will launch their Ioniq series that will include several electric drive train options. In 2018, Audi is slated to launch an all-electric 300-mile range SUV. Check this post for more detail on other EVs coming to showrooms soon.

5

Overall, more EV options mean more choices for drivers to choose a vehicle that is cheaper and cleaner than a comparable gasoline model (and fun to drive). Though the EV market still has to overcome some hurdles , the state of play right now provides real reason to be optimistic about where EVs are headed.