Net-Zero Energy Homes Pay Off Faster Than You Think—Even in Chilly Midwest

By Dan Gearino
View the original article here.

As solar and heat pump prices fall, these highly energy-efficient homes are paying for themselves faster. Here’s how they work and why they’re spreading northward.

Home-builder Bill Decker explains some of the techniques used to create highly energy-efficient homes in chilly southeast Michigan. New research shows that the extra cost of making a home net-zero energy can pay for itself in under a decade in Detroit and 11.4 years in Chicago. Credit: Dan Gearino

Home-builder Bill Decker explains some of the techniques used to create highly energy-efficient homes in chilly southeast Michigan. New research shows that the extra cost of making a home net-zero energy can pay for itself in under a decade in Detroit and 11.4 years in Chicago. Credit: Dan Gearino

 

LAMBERTVILLE, Mich.—On a drive down a country road, builder Bill Decker gives an off-the-cuff seminar about energy efficient homes.

He shifts from carpentry to electrical engineering, and then to theology—his belief that his faith compels him to take care of the earth. Every few minutes, he pauses and points out a house his family-owned company has built.

He has been in business since 1981 and only now is his industry beginning to grasp something he has been arguing for a while: Net-zero-energy homes—homes that are so efficient a few rooftop solar panels can produce all the electricity the home needs—can be built almost anywhere, even in places with brutal winters.

His case is bolstered by a recent report from the Rocky Mountain Institute showing net-zero energy houses can make financial sense in much of the Midwest as costs for some of the key components fall. The initial extra costs of making a new home a net-zero energy home pay for themselves through energy savings in less than a decade in both Detroit and Columbus, Ohio, and in less than 14 years in most of the 50 largest U.S. cities, the report says.

At the forefront are custom builders who specialize in efficient houses and helped to create this market, people like Decker, 79, whose southeastern Michigan company, Decker Homes, is just across the state line from Toledo, Ohio.

“It isn’t just energy efficiency we’re talking about here,” he says. “It’s the whole world. We’re talking about climate change.”

Indeed, housing is responsible for about 20 percent of U.S. greenhouse gas emissions, including its share of power plant emissions.

Yet his sales pitch is largely about comfort. An energy efficient house doesn’t have chilly drafts, and the temperature varies little from room to room, and those are things that appeal to most people, he says.

‘It’s the Little Things that Add Up’

Decker parks on the dirt driveway of a house in progress as a light rain turns to snow flurries. In a living room that is studs and bare wood floors, he notes the features that make this house highly energy efficient. The key is making insulation an essential part of construction.

Decker walks to the corner of the room and points out an opening of several inches between studs to allow for easy placement of insulation. Builders call this a “California corner,” which is an alternative to a typical corner design that is much more difficult to insulate.

“It’s little things that add up,” he says.

NZ 2

Zero-energy homes start with well-sealed and well-insulated attics, walls and basements or slabs. They often use triple-pane windows, especially in places with cold winters. Inside, energy-efficient appliances, highly efficient LED lighting and smart thermostats help avoid energy waste.

Their designs often take natural lighting into account, too, and position windows and overhangs for additional solar heating in the winter and shade in summer. Since the homes are sealed to avoid letting cold or hot air in—and cool or warm air out—they also have ventilation systems customized to maintain comfortable circulation.

Decker recently completed his first house with an air-source heat pump, which is less expensive than geothermal heat or other electric options. In cold weather, the system extracts heat from the outside air and uses it to maintain a comfortable indoor temperature. In warm weather, the process is reversed, with the system gathering heat from inside and transferring it outside.

He is starting to use air-source systems because newer models work well in below-freezing temperatures, which was not the case just a few years ago. Heat pump advancements are one of the main factors making highly efficient homes more affordable in many colder climates.

This is in addition to a cost factor that affects all climates: Rooftop solar prices have plummeted in recent years and are projected to continue doing so. That is true of battery power storage as well.

In Detroit, Net-Zero Pays for Itself in 9 Years

The costs and benefits of building net-zero houses vary widely in major cities, ranging from San Francisco, where the benefits would cover the costs in eight years, to Philadelphia, where it would take about three times as long, according to the Rocky Mountain Institute.

The largest savings tend to be in cities with high electricity rates and older building codes.

NZ 3

The key point is that energy efficiency pays for itself, which is not the case for many other major expenses in a house, said Jacob Corvidae, principal at Rocky Mountain Institute, a research nonprofit that focuses on clean energy.

“Zero-energy homes are actually affordable,” he said. This is important because many consumers, builders and policymakers are reluctant to consider zero-energy homes because of the perception that costs are prohibitive, he said.

In Detroit, for example, a 2,200-square-foot net-zero energy house would cost $19,753 more than the same house with no solar and typical efficiency. The energy-bill savings would be $2,508 in the first year, and the solar and efficiency costs would pay for themselves in about nine years with inflation and other changes taken into account.

Bill Decker's son, Dale, shows some of the construction methods used to insulate and seal a highly energy-efficient home against air leaks and energy waste. Credit: Dan Gearino

Bill Decker’s son, Dale, shows some of the construction methods used to insulate and seal a highly energy-efficient home against air leaks and energy waste. Credit: Dan Gearino

The Midwest is well represented among cities with short payoff periods. Detroit is second in the report. Columbus ranks fourth, with a payoff of less than 10 years. Chicago ranks 10th and Indianapolis is 12th, with payoffs of about 11 years and 12 years, respectively.

Detroit has high annual savings in part because the city has some of the highest electricity rates, Corvidae said. Columbus’ high savings are in part because the city has an older building code, so standard houses do not have high efficiency standards.

A home with all the energy efficiency attributes of a net-zero energy house but not the solar panels will save customers money even more quickly, the report notes, though it doesn’t provide all of the climate benefits. In Detroit, a “net-zero-energy ready” house without solar would cost $1,574 more than a typical house and would pay for itself in less than two years. After that, the investment means hundreds of dollars in savings for the homeowner every year.

New California Mandate Gets Close to Net-Zero

Net-zero energy homes are a fraction of 1 percent of new housing being built, but their share is growing. Builders completed 13,906 net-zero housing units last year in the United States and Canada, a 70 percent increase from the prior year, according to a report by the nonprofit Net-Zero Energy Coalition.

California was the leader with more than 5,000 units, five times more than runner-up Arizona, where the Rocky Mountain Institute report shows net-zero homes in Phoenix can cover their costs in 11 years.

California’s lead is likely to grow because of a state building code update that takes effect in 2020 and will require solar panels on most new housing and have strict efficiency standards, the first state to do so. The code falls short of a mandate for net-zero energy housing, but it comes close.

Meanwhile, some of the country’s largest home builders, such as PulteGroup and Meritage Homes, are taking steps to offer net-zero energy options. In Cortez, Florida, Pearl Homes is building a zero-energy community that also incorporates energy storage and electric vehicle chargers.

The corporate moves are tied to consumer demand and because energy efficiency is becoming more affordable, said Ann Edminster, a consultant and architect who works with the Net-Zero Energy Coalition.

“We’re starting to see the tip of that iceberg, and when it really hits, it’s going to be huge,” she said.

Bill Decker thinks many more people would want an energy efficient house if they only had someone to explain the benefits. In his part of the world, that someone is him.

“It’s creating value, saving money, helping the environment,” he said. “In the end, you say to yourself, ‘Why would you do anything else?'”

Florida development brings net zero homes to the mass market

A 148-home central Florida development may be the sign that net zero living has gone mainstream.

View the original article here.

Long-time builders Greg and Sue Thomas have opened Green Key Village, a 78-acre net-zero home development in Lady Lake, Florida, about 50 miles northwest of Orlando. The homes will be certified under the Florida Green Building Coalition, and one model home has already achieved a platinum rating, Thomas said. The homes will also be Energy Star and Department of Energy Zero Energy Ready Home. Each home will be HERS rated, and the goal is to achieve a HERS index of 50-55 prior to renewable energy installation. An average code built home has a HERS Index of 100.

Also, the homes have earned the Florida Friendly Landscaping silver designation in recognition of resource-efficient landscape design.

NZ 3

To help them with the challenge of selling a net-zero community, the Thomas’s brought on Tony Richardson to help them sell. With more than 30 years of experience in green home building and marketing, Richardson is a Green Designee of the National Association of Realtors, and a USGBC Green Associate.

Green Key Village is the first residential neighborhood in the nation designed using software offered by Ekotrope that was developed at the Massachusetts Institute of Technology. The software analyzes 10,000 variables to give designers data to compare each component of the home by its cost and energy efficiency. They can evaluate wall thickness, window size, insulation depth and every other aspect of the home. The development offers eight floor customizable plans in one- and two-story options. ranging from $318,000 to $414,000 and home sizes ranging from 2,755 square feet to 3,637 square feet.

Thomas said the Ekotrope analysis helped them make cost/benefit trade offs. For example, the home uses a 15-SEER rated air conditioning unit because the payback for a higher rated unit would have been longer than the life of the product. The analysis also showed that with the high-efficiency HVAC and a heat pump hybrid water heater, one of the most efficient on the market, the HVAC heat pump had to be only a 2.5-ton capacity in the 3,000-square-foot model home.

In an exclusive interview with ProudGreenHome.com, Greg and Tony talked about the challenges of presenting high performance, net-zero living to a mass-market real estate environment.

What was your vision for the community?

Greg: Where we live there’s a house with a big front porch and every afternoon the neighbors gather on that porch. In my mind, if all our houses had front porches I think it would be a great gathering place for neighbors to meet and fellowship. We wanted to build that kind of a neighborhood.

My dad was a builder, and I’ve been a builder for 30 years. It’s always been concrete block and stucco. That’s worn out. I said, let’s look for something different. We went to the coast, and saw houses with bright colors with lap siding, a metal roof and big windows covered with Bahamas shutters.

We put it out here in the middle of Lady Lake and have a great looking subdivision that isn’t made from a cookie cutter.

So that was our goal. We wanted to combine old Florida charm and new green living. I think we’ve hit it pretty good.

What are some of the challenges in communicating a high performance home to the general buyer?

Greg: I like to give them a brief overview and then back off until they ask more questions about it. It overloads them; actually, their eyes glass over when they’re just looking for the granite countertops.

It’s hard not to load them up with all the information, but we’ve spent so much money on this technology you hate to not to.

What makes your homes perform so well?

Greg: We used Ekotrope software to optimize the house design and balance all the HVAC loads, insulation and so on. We use open-cell spray foam on the underside of the roof deck, and the mechanical room is in the attic but it’s in conditioned space in the attic under the foam on the roof. Depending on the floor plan, the room can be 200 square feet to 500 square feet.

The GE heat pump water heater is in the room, and with it being a heat pump it keeps that area cooler and drier as it operates. It’s like having a dehumidifier up there. The manifold block plumbing system originates there too, right next to the water heater. And the HVAC ductwork is in there, too. It all works together.

It’s a nice attic room with stair leading to it homeowners could use for storage as well.

NZ 2

What are some of the green aspects of the home?

  • Icynene open-cell spray foam insulation
  • Advanced framing techniques
  • GE heat pump water heater
  • Two Panasonic energy recovery ventilators
  • Amana 15 SEER heat pump
  • Double pain Low-E windows from YKK
  • LED & CFL lighting
  • Energy Star appliances
  • WaterSense fixtures

What is the result of your green building strategies?

We cut the air conditioning load almost in half by going with the open cell spray foam insulation on the walls and ceiling. With the A/C, water heating, lighting and all the appliances are Energy Star rated, we’ve brought down our power usage on this house. Here an average house uses 1,500-1800 kilowatt/hours per month, and we’re down to less than 1,000. Then we take care of that with the solar panels.

 

NZ 3

What is your water conservation strategy?

As part of the Florida Green Building Coalition certification, we are certified to have less than a half-gallon of water in the lines. We use a maniblock plumbing system and PEX tubing.

Are you using advanced framing techniques, and how does that work with the wind load requirements?

We use regular 2×4 framing and what’s referred to as the “California corner,” two studs in the corners and we use horizontal blocking that gives you a nailing surface. You have to re-train your framers and help them remember that you can’t load up these corners with studs. We’ve heard of people going 24-inch centers but we haven’t gotten brave enough to do that.

All our homes have to be certified to meet 130 mph wind load. We use a solid sheathing with 4×10 OSB that helps fight uplift. Also the tie downs and anchors come into play to meet the wind load regulations.

Is there a price premium on the all the green attributes of the homes, and how do you communicate that to the buyers and the financial community?

From the water heater to the insulation the lighting to bath fans, to the ERV and solar panels, when you add all that up, the difference is $35,000 to $40,000 of additional value to the home.

We have prepared an addendum for our contract, because when you attach an addendum for the contract, the appraiser for the bank has to look at anything attached to the contract. For each model we have addendum that shows our cost for open cell spray foam insulation so and compare that to the traditional batt foam insulation on concrete block.

That also gives the homebuyer the documentation they need to apply for their solar tax credit.

How do buyers respond to the idea of a paying a premium for a high performance home?

We tell them, compared to an average $200 a month power bill, with the lower utility costs of these houses, you have $42,000 to $43,000 more power buying over the life of the mortgage. Whether you’re paying cash or using a mortgage, your overall buying power is that much more.

The math works. And you get a much a much healthier house. With the no-VOC paints, the low-VOC carpets and cabinets, your home is healthier. The ERVs are bringing in fresh air 24 hours a day.

Tony: These homes are priced very comparably to homes of similar size if they they had the same quality as these homes.

We can show on a cash-on-cash basis, they’ll be not spending more money but making money starting the first month and every month thereafter. There’s no flim flam here; it’s the truth.

Photos courtesy Green Key Village LLC.

America’s Great Climate Exodus Is Starting in the Florida Keys

By Prashant Gopal
View the original article here.

Mass migration begins as coastal homes are bulldozed in the state facing the biggest threat from climate-driven inundation.

Lori Rittel’s home in Marathon Keys, on Sept. 16

Lori Rittel’s home in Marathon Keys, on Sept. 16

Lori Rittel is stuck in her Florida Keys home, living in the wreckage left by Hurricane Irma two years ago, unable to rebuild or repair. Now her best hope for escape is to sell the little white bungalow to the government to knock down.

Her bedroom is still a no-go zone so she sleeps in the living room with her cat and three dogs. She just installed a sink in the bathroom, which is missing a wall, so she can wash her dishes inside the house now. Weather reports make her nervous. “I just want to sell this piece of junk and get the hell out,” she said. “I don’t want to start over. But this will happen again.”

Lori Rittel

Lori Rittel

The Great Climate Retreat is beginning with tiny steps, like taxpayer buyouts for homeowners in flood-prone areas from Staten Island, New York, to Houston and New Orleans — and now Rittel’s Marathon Key. Florida, the state with the most people and real estate at risk, is just starting to buy homes, wrecked or not, and bulldoze them to clear a path for swelling seas before whole neighborhoods get wiped off the map.

By the end of the century, 13 million Americans will need to move just because of rising sea levels, at a cost of $1 million each, according to Florida State University demographer Mathew Haeur, who studies climate migration. Even in a “managed retreat,” coordinated and funded at the federal level, the economic disruption could resemble the housing crash of 2008.

The U.S. government’s philosophy has been that local officials are in the best position to decide what needs to be done. Consequently, the effort has so far been ad hoc, with local and state governments using federal grants from the last disaster to pay for buyouts designed to reduce the damage from the next one.

“The scale of this is almost unfathomable,” said Billy Fleming, a landscape architecture professor at the University of Pennsylvania. “If we take any of the climate science seriously, we’re down to the last 10 to 12 years to mobilize the full force of the government and move on managed retreat. If we don’t, it won’t matter, because much of America will be underwater or on fire.”

If not for the $174,000 that Rittel, 60, owes on her mortgage, the Montana transplant would have left long ago. Insurance money is insufficient to rebuild, so she applied for one of the buyouts, administered by the state with $75 million of Irma-relief cash from the U.S. Department of Housing and Urban Development, as long as it lasts.

The inside of Lori Rittel’s home. Photographer: Jayme Gershen/Bloomberg

The inside of Lori Rittel’s home.
Photographer: Jayme Gershen/Bloomberg

Florida accounts for 40% of the riskiest coastal land in the U.S., according to the Union of Concerned Scientists, but it’s done little so far to pull people back from the coasts and lags behind states such as New Jersey, North Carolina and Texas. Across the country, the effort is still more theory than practice, even as a consensus among planners grows that “managed retreat” may be the best of bad options.

This year, HUD made available $16 billion for climate resilience, its first dedicated fund to fortify for future storms. Nine states, plus Puerto Rico and the Virgin Islands, will decide how to use it, whether to build sea walls, put houses on stilts or move people out of the way. The money is a fraction of what’s needed, and the process is moving at the speed of government.

A study by the Natural Resources Defense Council this month found that buyouts by the Federal Emergency Management Agency, which responds to disasters, take five years on average to be completed. By that time, many homeowners have rebuilt or moved. Similar data isn’t available on the grants from HUD, which also provides money to demolish homes.

“It’s a slow-motion emergency,” said Rob Moore, director of NRDC’s water and climate team. “But it’s happening right now. These last three hurricane seasons show us what it kind of looks like.”

A FEMA spokesman said the agency supports the  voluntary acquisition of flood-prone structures and provides the grant funding, but the prioritization of projects happens at the local level first and then by the state acting as the recipient. The agency believes each county floodplain manager and local official knows the needs of their communities best and are responsible for land usage and permitting.

About 6 million Floridians will need to move inland by century’s end to avoid inundation, according to Hauer, the demographer, in a 2016 paper. By then, about 80% of the nearby Keys, the archipelago that includes the tourist mecca of Key West, will be underwater. About 3.5 million people would be flooded in South Florida’s Miami-Dade and Broward, the two counties with America’s biggest exposed populations.

“Florida’s doing it at a really small scale,” said A.R. Siders, an assistant professor at the University of Delaware who studies climate adaptation. “Compared with the new housing units going up in South Florida, I don’t know if that would even cancel out.”

Here Comes the Flood

Number of people at risk by county from a sea level rise of 1.8 meters

Florida State University demographer Matt Hauer

Florida State University demographer Matt Hauer

But Florida runs on tourism and real estate revenue, and managed retreat is a phrase that makes real estate listing agents nervous. But there’s another Florida housing bubble waiting to pop. The Union of Concerned Scientists warns of a coming housing crash — from Miami to San Mateo, California — on a scale worse than last decade’s foreclosure crisis, caused by climate change — from flooding to heat waves and wildfires.

Cities are only starting to grapple with where to resettle residents, and how to transport communities and hometown identities. And homes on higher ground will also demand higher prices, worsening an affordability crisis.

Fifteen years after Hurricane Katrina, Louisiana is trying to relocate the Native American settlement of about 100 people on the Isle de Jean Charles, a narrow island that lost 98% of its land over the past six decades to climate change. It’s working with a $48 million grant from HUD for buyouts and to help them start anew on a 500-acre sugar cane field 40 miles north that the government will populate with homes and businesses. Importantly, it will be 9 feet above sea level. All but three of about 40 households have signed on.

“They’re starting to scale this up,’’ said Jesse Keenan, a social scientist at Harvard University who also specializes in climate adaptation. “This is about building up institutional knowledge on how to do this.’’

​​​​​​​New Jersey has a $300 million fund for buyouts and has purchased hundreds of houses since Superstorm Sandy in 2012, though like Florida, even more homes have been built on the coast in the meantime. Harris County, Texas — which includes Houston, ravaged by a series of storms including 2017’s Harvey — has done more than 3,000 FEMA buyouts, more than any other county in the U.S., according to NRDC.

In Monroe County, Florida, where Rittel lives, the planning is just beginning. The county has applied for $5 million of the HUD money — the state maximum. Already, about 60 local homeowners have applied, so it will require triage. Senior citizens, families and residents in the riskiest flood zone would get priority, said Assistant County Administrator Christine Hurley.

Rittel isn’t sure how long she can hang on.

Her insurance payout of about $100,000 would cover repairs to the 640-square-foot house. But the county requires that when more than 50% of a home is damaged, that it be completely rebuilt to meet modern storm-resiliency codes and — in her flood zone — on stilts. That would cost at least $200,000, money she doesn’t have.

She dreams of resettling in Key West or Homestead, a safer spot on the Florida mainland.

“I’d like to take the money and run,” Rittel said. “But I’ll have to buy something on stilts. I’m not buying anything on the ground down here ever ever again.”

This story is part of Covering Climate Now, a global collaboration of more than 220 news outlets to highlight climate change.

 

Utilities are starting to invest in big batteries instead of building new power plants

By Jeremiah Johnson and Joseph F. Decarolis
View the original article here.

This is what a 5-megawatt, lithium-ion energy storage system looks like. Credit: Pacific Northwest National Laboratory

This is what a 5-megawatt, lithium-ion energy storage system looks like. Credit: Pacific Northwest National Laboratory

Due to their decreasing costs, lithium-ion batteries now dominate a range of applications including electric vehicles, computers and consumer electronics.

You might only think about energy storagewhen your laptop or cellphone are running out of juice, but utilities can plug bigger versions into the electric grid. And thanks to rapidly declining lithium-ion battery prices, using energy storage to stretch electricity generation capacity.

Based on our research on energy storage costs and performance in North Carolina, and our analysis of the potential role energy storage could play within the coming years, we believe that utilities should prepare for the advent of cheap grid-scale batteries and develop flexible, long-term plans that will save consumers money.

Peak demand is pricey

The amount of electricity consumers use varies according to the time of day and between weekdays and weekends, as well as seasonally and annually as everyone goes about their business.

Those variations can be huge.

For example, the times when consumers use the most electricity in many regions is nearly double the average amount of power they typically consume. Utilities often meet peak demand by building power plants that run on natural gas, due to their lower construction costs and ability to operate when they are needed.

All of the new utility-scale electricity capacity coming online in the U.S. in 2019 will be generated through natural gas, wind and solar power as coal, nuclear and some gas plants close. Credit: U.S. Energy Information Administration

All of the new utility-scale electricity capacity coming online in the U.S. in 2019 will be generated through natural gas, wind and solar power as coal, nuclear and some gas plants close. Credit: U.S. Energy Information Administration

However, it’s expensive and inefficient to build these power plants just to meet demand in those peak hours. It’s like purchasing a large van that you will only use for the three days a year when your brother and his three kids visit.

The grid requires power supplied right when it is needed, and usage varies considerably throughout the day. When grid-connected batteries help supply enough electricity to meet demand, utilities don’t have to build as many power plants and transmission lines.

Given how long this infrastructure lasts and how rapidly battery costs are dropping, utilities now face new long-term planning challenges.

Cheaper batteries

About half of the new generation capacity built in the U.S. annually since 2014 has come from solar, wind or other renewable sources. Natural gas plants make up the much of the rest but in the future, that industry may need to compete with energy storage for market share.

In practice, we can see how the pace of natural gas-fired power plant construction might slow down in response to this new alternative.

Grid-scale batteries are being installed coast-to-coast as this snapshot from 2017 indicates. Credit: U.S. Energy Information Administration, U.S. Battery Storage Market Trends, 2018.

Grid-scale batteries are being installed coast-to-coast as this snapshot from 2017 indicates. Credit: U.S. Energy Information Administration, U.S. Battery Storage Market Trends, 2018.

So far, utilities have only installed the equivalent of one or two traditional power plants in grid-scale lithium-ion battery projects, all since 2015. But across California, Texas, the Midwest and New England, these devices are benefiting the overall grid by improving operations and bridging gaps when consumers need more power than usual.

Based on our own experience tracking lithium-ion battery costs, we see the potential for these batteries to be deployed at a far larger scale and disrupt the energy business.

When we were given approximately one year to conduct a study on the benefits and costs of energy storage in North Carolina, keeping up with the pace of technological advances and increasing affordability was a struggle.

Projected battery costs changed so significantly from the beginning to the end of our project that we found ourselves rushing at the end to update our analysis.

Once utilities can easily take advantage of these huge batteries, they will not need as much new power-generation capacity to meet peak demand.

Credit: The Conversation

Credit: The Conversation

Utility planning

Even before batteries could be used for large-scale energy storage, it was hard for utilities to make long-term plans due to uncertainty about what to expect in the future.

For example, most energy experts did not anticipate the dramatic decline in natural gas prices due to the spread of hydraulic fracturing, or fracking, starting about a decade ago – or the incentive that it would provide utilities to phase out coal-fired power plants.

In recent years, solar energy and wind power costs have dropped far faster than expected, also displacing coal – and in some cases natural gas – as a source of energy for electricity generation.

Something we learned during our storage study is illustrative.

We found that lithium ion batteries at 2019 prices were a bit too expensive in North Carolina to compete with natural gas peaker plants – the natural gas plants used occasionally when electricity demand spikes. However, when we modeled projected 2030 battery prices, energy storage proved to be the more cost-effective option.

Credit: The Conversation

Credit: The Conversation

Federal, state and even some local policies are another wild card. For example, Democratic lawmakers have outlined the Green New Deal, an ambitious plan that could rapidly address climate change and income inequality at the same time.

And no matter what happens in Congress, the increasingly frequent bouts of extreme weather hitting the U.S. are also expensive for utilities. Droughts reduce hydropower output and heatwaves make electricity usage spike.

The future

Several utilities are already investing in energy storage.

California utility Pacific Gas & Electric, for example, got permission from regulators to build a massive 567.5 megawatt energy-storage battery system near San Francisco, although the utility’s bankruptcy could complicate the project.

Hawaiian Electric Company is seeking approval for projects that would establish several hundred megawatts of energy storage across the islands. And Arizona Public Service and Puerto Rico Electric Power Authority are looking into storage options as well.

We believe these and other decisions will reverberate for decades to come.If utilities miscalculate and spend billions on power plants it turns out they won’t need instead of investing in energy storage, their customers could pay more than they should to keep the lights through the middle of this century.

The United States is headed for a battery breakthrough

By Tim Sylvia
View the original article here.

A new report by the Energy Information Administration projects U.S. installed battery storage capacity will reach 2.5 GW by 2023. Florida and New York are set to pave the way as massive projects in each state will account for almost half the coming capacity.

Storage is ready to take off in a big way. Image: Tesla

Storage is ready to take off in a big way. Image: Tesla

Symbiosis is one of life’s most beautiful phenomena. Certain things just work perfectly together and the energy revolution is no different, as renewable energy resources and battery storage go together like peas in a pod.

However, the United States has an operating battery storage capacity of only 899 MW to date. And while that figure is expected to reach 1 GW this year that would still only represent 1/67th of the nation’s cumulative solar generation capacity, and an even smaller percentage of the overall renewables capacity.

That could all be about to change dramatically though, as the U.S. Energy Information Administration(EIA) has released a report predicting battery storage capacity will almost treble by 2023, to 2.5 GW.

Past, current and predicted U.S. battery storage capacity levels. Image: EIA

Past, current and predicted U.S. battery storage capacity levels. Image: EIA

 

The projections were made based on proposed utility scale battery storage projects scheduled for initial commercial operation within five years. The EIA tracks data with its Preliminary Monthly Electric Generator Inventory survey, which updates the status of projects scheduled to come online within 12 months.

As drastic as a prediction of 2.5 GW appears, there is a precedent. Between late 2014 and March, installed battery storage capacity rose more than four times over, from 214 to 889 MW.

A look at the states that brought the U.S. to its current storage reality offers surprising results. Leading the way was California, unsurprisingly. However, of the six states known to pv magazine to have energy storage mandates, California is the only one in the top 10 for installed capacity. The others: Arizona, Nevada, New York, Massachusetts and Oregon; each have less than 50 MW of installed battery storage capacity.

The top 10 states in terms of current installed battery storage capacity. Image: EIA

The top 10 states in terms of current installed battery storage capacity. Image: EIA

Texas, Illinois and Hawaii are relatively unsurprising storage pioneers as all three states have strong solar industries and Hawaii especially has been pushing battery storage deployment. Right away, however, the names that stand out on the list are West Virginia, Pennsylvania and Ohio. None of those is known as a solar pioneer; they have just under 650 MW of generation capacity installed between them. Special recognition goes to West Virginia on that score, with its 8.5 MW.

So what’s with all the storage? Independent of renewables West Virginia, Pennsylvania and Ohio – plus New Jersey, the seventh state on the list – are all members of the PJM Interconnection. PJM was the first large market for battery storage, and uses the technology for frequency regulation.

That list is likely to look different by 2023, however. Of the 1,623 MW expected to come online by 2024, 725 MW will come courtesy of two projects – both in states outside the current top 10.

Two mammoth projects

The first of those is Florida Power and Light’s (FPL) planned battery system for its Manatee Solar Energy Center in Parrish. The battery is set to clock in at 409 MW, which would make it the largest solar powered battery system in the world.

In that project’s shadow, but nevertheless considerable is the Helix Ravenswood facility, planned in Queens, New York. Almost more impressive than the project’s anticipated 316 MW of capacity is the idea of having a storage project of such magnitude in NYC.

FPL’s Manatee battery is anticipated to begin commercial operation in 2021, as is the first stage of Helix Ravenswood. That initial phase in New York will represent 129 MW of capacity, with the remaining 187 MW following via a 98 MW second phase and 89 MW final stage. The anticipated commercial operation dates of those expansions have not yet been announced.

We have seen the future and there are batteries, lots of them, demonstrating symbiosis extends beyond the natural world.

Emerald Skyline Provides Sustainability and Resiliency Assessments and Risk Ratings for Investors, Lenders, Insurers and Tenants.

“Recognizing the need for sustainability and resiliency due diligence, Emerald Skyline Corporation has developed a Sustainability and Resiliency Assessment (SaRA Rating©) Rating system to provide commercial real estate investors with a complete picture of the risk associated with a particular property or investment.”

BOCA RATON, FL, June 12, 2019

Today, Emerald Skyline introduces its’ Sustainability and Resiliency Assessment (SaRA Rating©) Rating system.   The purpose of the SaRA Rating© Report is to provide information on the sustainability and resiliency of a property given its physical and locational attributes. The property-specific, neighborhood and community together with information on natural and man-made hazards are assessed using Emerald Skyline’s Risk Assessment Rating System to enable investors, buyers, lenders, tenants and other stakeholders, including those who have a security interest in the mortgage, a meaningful gauge on the overall sustainability and resiliency of a property.

SaRA Rating© builds on due diligence information on a property to evaluate a property’s sustainability and resiliency which allows owners, managers and tenants to control and help reduce the rapidly increasing costs of utilities and insurance while reducing the carbon footprint and to understand the property’s resiliency in response to man-made and natural hazards and calamities.

According to MunichRe, an international reinsurance firm, 2018 was the fourth-costliest year for natural disasters in recorded history. The damage and destruction cost $160 billion, of which only half was insured. The worst damage came from Hurricanes Michael and Florence and Asian Typhoons Jebi, Signal 10 Mangkhut and Trami. The California wildfires alone cost $57 billion, of which slightly more than half, $29 billion, was insured.

The damage from natural disasters and extreme weather events– including blizzards, droughts, floods, heat waves, hurricanes, lightning strikes, tornadoes, tsunamis, earthquakes, mudslides, volcanoes and wildfires – cost the US economy a staggering $307 billion in 2017 – more than double the inflation adjusted average of $140 billion.

Of significance to these astounding statistics is the frequency with which natural disasters and extreme weather events are occurring: In 2018 there were 29 events that cost at least $1 billion each in damage while there were 16 events costing more than $1 billion each in 2017. The United Nations has found that the number of natural disasters per year has doubled in the last 20 years.

It no longer makes sense to wait until after a crisis to implement resilience efforts. Resiliency strategies for buildings should be identified and implemented now, so there is a greater chance of improved performance and reduced risk to both people and property, not only today but for the future, benefiting all building stakeholders.

Buildings and businesses do not operate in a vacuum. The evaluation of the sustainability and resiliency of a building is significantly influenced by the neighborhood and community in which it is located. For instance, a building may have hardened exterior skin, wind impact windows and design and equipment protected from flood or wind intrusion, but if the community is nor resilient, the building and its tenants may not be able to recover quickly after a storm. Accordingly, the SaRA Rating© assessment, evaluates both the physical attributes of the subject property and the resiliency of the community in which it is located.

The damage from natural disasters and extreme weather events– including blizzards, droughts, floods, heat waves, hurricanes, lightning strikes, tornadoes, tsunamis, earthquakes, mudslides, volcanoes and wildfires – cost the US economy a staggering $307 billion in 2017 – more than double the inflation adjusted average of $140 billion.

Of significance to these astounding statistics is the frequency with which natural disasters and extreme weather events are occurring: In 2018 there were 29 events that cost at least $1 billion each in damage while there were 16 events costing more than $1 billion each in 2017. The United Nations has found that the number of natural disasters per year has doubled in the last 20 years.

It no longer makes sense to wait until after a crisis to implement resilience efforts. Resiliency strategies for buildings should be identified and implemented now, so there is a greater chance of improved performance and reduced risk to both people and property, not only today but for the future, benefiting all building stakeholders.

Buildings and businesses do not operate in a vacuum. The evaluation of the sustainability and resiliency of a building is significantly influenced by the neighborhood and community in which it is located. For instance, a building may have hardened exterior skin, wind impact windows and design and equipment protected from flood or wind intrusion, but if the community is nor resilient, the building and its tenants may not be able to recover quickly after a storm. Accordingly, the SaRA Rating© assessment, evaluates both the physical attributes of the subject property and the resiliency of the community in which it is located.

SaRA Ratings

According to Paul Jones, a principal of Emerald Skyline, “armed with the SaRA Rating© and report, the stakeholders can incorporate current and prospective tenant/user demand for the space in the building given the cost of occupancy and resiliency as well as investor demand and potential pricing for the asset. A resilient and sustainable asset will combine low-cost operations due to sustainably-reduced energy and maintenance costs and managed insurance expenses while maximizing the net cash flow and long-term value of the property.”

Emerald Skyline Corporation is a sustainability and resiliency consulting and LEED project management firm formed in 2012 by veteran real estate professionals to facilitate the sustainability and resiliency of the built environment by advising and assisting building owners, managers, tenants and other stakeholders in the evaluation, selection and implementation of sustainable and resilient strategies and practices.

To find out more information about Emerald Skyline’s Sustainability and Resiliency Assessment Rating system, please contact Paul Jones at pjones@emeraldskyline.com or call him at 786-468-9414

You have checked all the boxes on your due diligence checklist; but have you assessed the Climate Risk of Your Real Property Investment?

By Paul L. Jones, CPA, May 13, 2019

In his legal commentary posted on April 1, 2019, my colleague, Rick Jones, a partner with Dechert LLP, a leading law firm serving the Commercial Real Estate Debt Market, opened with “I’m finally writing about climate change… not because 97 out of 100 scientists are shouting at us incessantly about the need to do something, but because I am dead certain that there are real and fairly immediate risks associated with the public reaction to the perception or awareness (take your pick) of the climate change risk which will drive regulatory intrusion on both the state and federal level, will drive legislation and moreover, will inform market reaction to lenders, investors, developers and their properties because of their climate change posture or profile.”

Engineered CItyThe esteemed Mr. Jones continues: “Where do we start?  We are already seeing some commercial real estate owners begin to adapt to regulatory change.  Look at the fantastic engineering marvel which is the Hudson Yards, built 40 feet above sea level, with its storm management system and its fortress-like power system designed to survive a mega storm.  That’s expensive.  It was clearly purpose driven.  We should ask what made them, a bunch of smart folks, put up the money.  I guarantee it wasn’t frivolous.  I would suggest to you that it’s a sign of things to come.  More generally, we are also seeing more solar, more green building technology and more innovations in engineering and in general more willingness to pay real money to address environmental concerns.”

New York has a wet climate, and water – from hurricanes, flooding, storm surges and even blizzards – is one of its primary environmental challenges throughout the year. Of course, buildings in NYC also endure seismic activity, high heat loads in the summer, power outages, manmade disasters like those produced by terrorist attacks as well as high humidity and year-round precipitation.

On the Pacific coast, seismic considerations are a primary concern as well as danger from wildfires, flash floods, and drought.

For most of my career serving the real estate industry, I have primarily conducted due diligence and providing underwriting and financial feasibility analyses for buyers, investors, lenders and capital market participants.

We usually start with a checklist of due diligence and underwriting items which typically includes:

  • reviewing historical operating statements and related reports,
  • abstracting leases and tenant correspondence records,
  • getting a title abstract, checking the flood zone,
  • obtaining and reviewing a property condition assessment (PSA) and a Phase 1 environmental site assessment (ESA), and
  • evaluating all legal and contractual arrangements that may affect the income and expenses of the property.

But, if you are like most real estate investors, you have missed one item which affects all properties and portfolios: the risk resulting from climate change and sea level rise as well as man-made hazards: You still do not know how sustainable and resilient the income and future value from your investment is.

Beginning about five years ago, my clients started to ask questions regarding the potential effect of climate change and sea level rise on the sustainability and resiliency of the property.

  • It is important to note that the risk to real property assets – which are immovable by their nature – exists regardless of whether you believe humans have caused climate change, or not.
  • In fact, my client chose to divest of assets in Miami in order to buy assets in locales without the risk of sea level rise and our screening process involved an informal, yet substantive, assessment of the risk from climate change – no matter the location of the property.

In an article entitled “What does resilience mean for commercial real estate” by Ryan M. Colker published in the September/October issue of BOMA Magazine, he opens with the following observation:

Around the world, the frequency, intensity and impacts of natural disasters are increasing. These events can significantly affect the social, economic and environmental functionality of communities. The ability of commercial buildings and the businesses they house to adequately prepare for such events and quickly return to full operations—a quality known as resilience—contributes significantly to a community’s ability to bounce back. In addition to the community-wide impacts, the state of individual buildings also can affect the long-term viability of the businesses that occupy those buildings.”

For a multi-family, commercial or industrial building, we at Emerald Skyline define building resilience as “the ability of the systems and structure to protect, maintain or restore the value of, functionality of, and income generated by a property after a damaging event or calamity – whether it is from a weather event or a man-made circumstance – within a pre-determined acceptable timeframe.

  • A widely-cited 2005 study by the Multi-hazard Mitigation Council (MMC) of the National Institute of Building Sciences “documented how every $1 spent on mitigation saves society an average of $4.
  • In a 2018 interim update report by the MMC found that costs and benefits of designing all new construction to exceed select provisions in the 2015 IBC and the IRC and the implementation of the 2015 International Wildland-Urban Interface Code (IWUIC) resulted in a national similar benefit of saving $4 in future losses for every $1 spent on additional, up-front construction costs.

In a report published last month (April 2019) by the Urban Land Institute (ULI) and underwritten by Heitman LLC (Heitman) entitled “Climate Risk and Real Estate Decision-making,” the authors note that:

“In 2017, the year Hurricanes Harvey and Maria hit the United States and storms battered northern and central Europe, insurers paid out a record $135 billion globally for damage caused by storms and natural disasters. This figure does not represent actual damages, which in the United States alone equaled $307 billion, according to National Oceanic and Atmospheric Administration estimates.”

In the Foreword, Ed Walter, Global CEO, ULI, and Maury Tognarelli, CEO, Heitman, highlight the need to address sustainability and resiliency:

“Failure to address and mitigate climate risks may result in increased exposure to loss as a result of assets suffering from reduced liquidity and lower income, which will negatively affect investment returns. At the same time, investors who arm themselves with more accurate data on the impact of climate risks could help differentiate themselves and benefit from investing in locations at the forefront of climate mitigation.

And the industry – especially among institutional investors – is taking note. “Many leading investment managers and institutional investors are undertaking flood, resilience, and climate vulnerability scans of their portfolios. These mapping exercises seek to identify the impacts of physical climate risks on their properties, including sea-level rise, flooding, heavy rainfall, water stress, extreme heat, wildfire, and hurricanes. Potential impacts being considered range from physical access and business disruption for tenants to the effects that longer-term temperature increases or increased wear and tear on buildings could have on operating and capital expenditure requirements. The ultimate objective for the investment community is to understand how climate will affect asset liquidity and, as a result, returns, in terms of both income and capital growth.”

The results of the survey conducted in preparation of this report, the researchers found that industry participants continue to rely on insurance companies to cover potential losses from physical damage due to a natural disaster – but they astutely point out that insurance “does not protect investors from devaluation or a reduction in asset liquidity.” They categorize the climate risks either physical or transitional risks as follows:

  • “Physical risks are those capable of directly affecting buildings; they include extreme weather events, gradual sea-level rise, and changing weather patterns.
  • “Transition risks are those that result from a shift to a lower-carbon economy and using new, non-fossil-fuel sources of energy. These include regulatory changes, economic shifts, and the changing availability and price of resources.

“The location-specific physical threats posed by factors such as sea-level rise, hurricanes, wildfires and forest fires, heat stress, and water stress are among the most easily observable risks to real estate investment. They are a particular concern since many key markets for real estate investment are in areas exposed to the physical impacts of climate change.

These risks and their potential impact on real estate is summarized in the following table.

types of risk

So far, according to the ULI report, “…most investment managers and investors for directly held assets currently use insurance as their primary means of protection against extreme weather and climate events.” However, “leading companies in the industry … are modifying existing decision-making and management processes to add climate and extreme weather-related factors to those being considered alongside other risks and opportunities.

The National Infrastructure Advisory Council (NIAC) in a 2009 repot characterized resilience as having four key features known as the “4-Rs”:

  • Robustness: the ability to maintain critical operations and functions in the face of crisis.
  • Resourcefulness: the ability to skillfully prepare for, respond to and manage a crisis or disruption as it unfolds.
  • Rapid recovery: the ability to return to and/or reconstitute normal operations as quickly and efficiently as possible after a disruption.
  • Redundancy, back-up resources to support the originals in case of failure that should also be considered when planning for resilience

From the Whole Building Design Guide, a program of the National Institute of Building Sciences (NIBS), understanding the relationship between Asset (Building) resilience and the community’s resilience requires an understanding of the distinctions and relationships between risk, resilience and sustainability as follows:

  • Risk is expressed as the relationship between a particular hazard or threat that may degrade, or worse, devastate, the building’s security, operations and functionality and the consequences that result from this degradation of performance.
  • Resilience is the ability of a building or asset to recover from, or adjust, easily to misfortune or change. The ability to prepare and plan for, absorb, recover from, or more successfully adapt to actual or potential adverse effects as reflected in the aforementioned Four Rs.
  • Sustainability of an asset is determined by its ability to meet the needs of the present while being able to maintain its functionality over time without not being harmful to the environment or depleting natural resources.

The following diagram created by Mohammed Ettouney and Sreenivas Alampalli in their books on Infrastructure Health in Civil Engineering, presented the relationship of threat, vulnerability and consequences to risk as follows:

riskreward

Recognizing the need for sustainability and resiliency due diligence, Emerald Skyline Corporation has developed a Sustainability and Resiliency Assessment (SaRA Rating©) Rating system to provide commercial real estate investors with a complete picture of the risk associated with a particular property or investment. The information not only helps investors and owners but also provides lenders, insurers and tenants with information relevant to their decisions.

SaRA Rating© incorporates an assessment of the physical attributes of the property – including incorporation of information obtained from traditional due diligence procedures with additional procedures to determine the relative risk, resiliency and sustainability of the property over the investment horizon.

  • The physical review of the property is conducted in conjunction with the Phase I environmental site assessment and the property condition assessment and includes a review of the property’s resiliency features like hardened walls, raised electronic and network connections, secondary systems.

No building operates in a vacuum: Its resiliency, in particular, is directly connected to its location and is directly affected by the surrounding neighborhood, the community, and natural and man-made risks (hazards).

Based on a property-specific assessment including use of mapping services, our team of professionals evaluate a building’s resiliency and sustainability resulting in a rating from 1, not resilient or sustainable (High Risk) to a 5 (Highly Resilient). Our objective is to provide investors with the information they need to make prudent investment decisions that account for the physical, environmental and social risks to the cash flow stream and market value of the building.

At the conclusion of our procedures, we identify land and building improvements that would enhance a property’s resiliency and sustainability. The economics of each improvement or enhancement is assessed in a cost-benefit analysis.

We then evaluate the tradeoffs between performance of a building over its life-cycle and the cost of improving the building systems to ensure its sustainability and resiliency. Accordingly, we evaluate the total cost of ownership (TCO) by determining the capital cost of the property including any improvements plus the present value of the future expenses of operations, maintenance, utilities and the estimated cost to recover from a calamity.

Further, armed with the SaRA Rating© and report, the stakeholders can incorporate current and prospective tenant/user demand for the space in the building given the cost of occupancy and resiliency as well as investor demand and potential pricing for the asset. A resilient and sustainable asset will combine low-cost operations due to sustainably-reduced energy and maintenance costs and managed insurance expenses while maximizing the net cash flow and long-term value of the property.

The objective of all due diligence – including and especially the assessment of all the risks of ownership – is to optimize the overall returns on the investment while quantifying and minimizing the risks and costs to achieve those goals – that is the purpose of Emerald Skyline’s Sustainability and Resiliency Assessment Rating© system – your one-stop resource to measure and manage climate risk in the real estate industry.

For more information, contact Paul L. Jones, CPA, Phone: 786-468-9414; email: PJones@EmeraldSkyline.com

Israel Completes World‘s Largest Solar & Thermal Electric Facility

By David Lazarus
View the original article here.

The state-of-the-art thermal electric power plant in Israel’s Negev Desert is equipped with more than 50,000 computer-controlled heliostats that produce enough power for 150,000 homes, keeping 110,000 tons of CO2 emissions out of the air per year.

The Ashalim solar and thermal electric power plant in Israel’s Negev Desert is up and running. The state-of-the-art facility is equipped with more than 50,000 computer-controlled heliostats or mirrors, which can track the sun in two dimensions and reflect the sunlight onto a boiler placed on top of a tower measuring 240 m-high (787.4 ft). That’s higher than some of the tallest sky scrapers in the world and by far the tallest solar tower ever built.

How does it work? All those tens of thousands of mirrors are hooked up to a computer operated tracking system so that they all move precisely with the orbit of the earth around the sun throughout the day and direct the heat from the sunlight to a spot on the boiler on top of the tower to within 0.0015499969 of an inch. The super hot water in the boiler produces superheated steam, which is then conveyed through pipes down below with enough pressure to spin a steam turbine-generator at astronomical speeds needed to produce electricity. The solar run generator can put out 300 megawatts of clean electricity every day, or enough to power about 150,000 homes.

Ashalim construction in 2016 – BrightSource Energy website

Ashalim construction in 2016 – BrightSource Energy website

Another feature of the Ashalim project is the use of solar thermal technology that can store energy for use at night in order to provide consistent and reliable output of electricity. This is one of the largest renewable energy projects in the world. The facility covers an area of over 3 sq. km (2 sq. miles).

Israel’s climate is ideal for solar power, particularly in the Negev which enjoys more than 300 sunny days a year. Israel has been home to many solar technology breakthroughs, but the government has been slow in getting away from using fossil fuels for power. But that is definitely starting to change with a goal getting 10 percent of its energy needs from renewable sources by 2020 with the new solar project. Once the project is proven fully successful, Israel plans to move ahead rapidly towards renewable energy sources.

Together with the recent discovery of huge deposits of natural gas along Israel’s Mediterranean Coast, the Ashalim plant will contribute to Israel’s security by reducing dependence on fossil fuel imports. It will also keep us safe by keeping 110,000 tons of CO2 emissions per year out of the air we breathe.

Solar Energy Isn’t Just for Electricity

It can also provide carbon-free heat for a wide variety of industrial processes

By Steven Moss
View the original article here.

Part of the Miraah soler thermal project in Oman. Credit: GlassPoint Solar

Part of the Miraah soler thermal project in Oman. Credit: GlassPoint Solar

The industrial processes that underpin our global economy—manufacturing, fuel and chemical production, mining—are enormously complex and diverse. But they share one key input: they, as well as many others, require heat, and lots of it, which takes staggering amounts of fuel to produce. Heat and steam generation is critical to the global economy, but it’s also an overlooked and growing source of greenhouse gas (GHG) emissions.

The good news is that innovative solar technologies can produce steam at industrial scale—reducing emissions and, increasingly, cutting costs. And given the current climate outlook, it’s urgent that industry adopt these new technologies.

Despite enormous progress around the world to ramp up renewables and increase energy efficiency, global GHG emissions reached an all-time highin 2018. In a report released in January, the Rhodium Group found that even though renewable energy installations soared and coal plants shut down, carbon emissions in the U.S. rose sharply last year. Emissions from industry shot up 5.7 percent—more than in any other sector, including transportation and power generation. The authors of the Rhodium Group study concluded that despite increased efforts from policymakers and the business to tackle emissions, “the industrial sector is still almost entirely ignored.”

This must change, at the global level. Worldwide industry is responsible for a quarter of total emissions. And while those from transportation and residential segments are trending down, the International Energy Agency (IEA) projects that industrial emissions will grow some 24 percent by 2050.

As people around the world continue to transition from living off the land to moving to cities and buying and consuming more things, industrial activity will continue to increase—and the need to reduce corresponding emissions will become all the more urgent.

Credit: GlassPoint Solar

Credit: GlassPoint Solar

This brings us back to heat. Industry is the largest consumer of energy, and a surprising 74 percent of industrial energy is in the form of heat, mostly process steam. Solar steam—making the sun’s heat work for industry—is a largely unexplored but promising avenue for reducing emissions.

While photovoltaic (PV) panels that convert sunlight into electricity are more common, thermal solutions are what’s needed to meet industry’s growing demand for heat. In a solar thermal system, mirrors focus sunlight to intensify its heat and produce steam at the high temperatures needed for industry. Another key advantage is the ability to store the heat using simple, proven thermal energy storage in order to deliver steam 24 hours a day, just like a conventional fossil fuel plant. With the right technology, solar thermal can be a reliable, efficient and low-cost energy source for industrial steam generation.

So-called "enclosed trough technology" uses sunshine to produce zero-carbon steam. Credit: GlassPoint Solar.

So-called “enclosed trough technology” uses sunshine to produce zero-carbon steam. Credit: GlassPoint Solar.

For example, renewable process heat provider Sunvapor is partneringwith Horizon Nut to build a 50-kilowatt solar thermal installation at a pistachio processing facility in the Central Valley of California. The companies are working to expand solar steam production for food industry processes, such as pasteurization, drying and roasting.

In Oman and California, GlassPoint Solar is operating and developing some of the world’s largest solar projects for industry. GlassPoint’s greenhouse-enclosed mirrors track the sun throughout the day, focusing heat on pipes containing water. The concentrated sunlight boils the water to generate steam, which is used by Oman’s largest oil producer to extract oil from the ground. The capacity of GlassPoint’s Miraah plant, which can currently deliver 660 metric tons of steam every day, will top 1 gigawatt of solar thermal energy when completed. This same technology is also being deployed in California to reduce emissions from one of the country’s largest and oldest operating oilfields.

Meanwhile, to meet the needs of extremely high-temperature (800-1,000degreesC) industrial processes, the European Union is developing SOLPART, a research project to develop solar thermal energy that can be used to produce cement, lime and gypsum.

While fossil fuels remain the dominant source of heat for industry across all sectors and regions, industry is beginning to explore cleaner alternatives—and in some cases, industry is leveraging solar steam on a significant scale. As technology advances, more and more companies will find that switching to solar steam can simultaneously reduce costs and emissions, improving business operations while shrinking its carbon footprint.

When it comes to mitigating climate change, most attention has been directed to the things we see, buy, or use on a daily basis—the cars we drive, the food we eat, the power plants that keep our lights on. But behind all these activities is process heat, an emissions source that has been largely ignored.

Now we must turn our attention to industry—the sleeping giant of climate action. Process heat is an overlooked opportunity to slash GHG emissions, and solar technologies operating at the scale needed by industry are currently available. It’s time to embrace them and stop industrial heat from heating up our planet.

How IoT Plays A Role In Developing Sustainable Transportation

sustainable transportation iot
By Megan Nichols
View the original article here.

The Internet of Things is transforming the modern world in manifold ways. It’s making our homes smarter, our stores more connected and informed, our vehicles more powerful, and our equipment — especially the industrial variety — more capable.

“IoT” is a blanket term that refers to the entire network of connected devices, from smartphones to household appliances. IoT devices have the ability to connect with local or public networks to transmit, receive and process data streams. This means that, as a society, we can collect a lot more information about how our devices are operating. It also means we can interface with them remotely to do things like open a garage door or turn on a light from hundreds of feet or even miles away.

This technology offers a variety of benefits, including more efficient use of resources and improved sustainability practices. That’s especially true of the transportation sector and modern travel.

Airports and Air Travel

The IoT provides an added layer of convenience for customers and better sustainability for parent companies.

For customers, the technology can be used to improve their travel experience. Miami International Airport, for example, relies on connected smartphone applications to provide real-time information to passengers about campus events and locations, baggage claim info, boarding instructions and more.

As for airports themselves, the technology can help eliminate excess waste produced as a result of high energy use. Smart bulbs and connected light fixtures, for instance, can turn off lights in empty areas of the campus. Efficient thermostats can better regulate and coordinate air temperatures within the facility — not just for keeping people more comfortable, but also to use less power in the process.

Logistics and Public Transportation

Whether you’re talking about buses, above-ground trams, or high-speed trains, the logistics involved are incredible. A transport company must consider how much room they have, how many people have booked a trip, what’s changed — such as who’s canceled or joined — and even how much luggage or storage space is available.

But it doesn’t stop there. Vehicles need fuel, supplies, and maintenance — and they’re all directly tied to a strict and comprehensive schedule. Like you see with flights, if a bus or other transport is late, it affects the entire day’s schedule.

IoT technology can help with this by providing more nuanced and real-time details about the goings-on within a facility or transport. This provides much more oversight for transportation managers and planners, if not automating the entire field outright.

GPS modules can be used to track each transport with up-to-date stats like speed, fuel levels and arrival times. Bluetooth beacons can be used to deliver local information to customers’ phones and devices, with real-time alerts about delays or on-time schedules.

There’s incredible potential here, and the industry is definitely starting to catch on.

Smart Roads

As you’d expect, smart and connected roads can help manage traffic patterns, accident response, and other related problems. Imagine receiving traffic updates on your phone directly from the very road beneath your vehicle’s tires. Highways and street surfaces can be outfitted with advanced sensors to collect usage information, which is then fed into a municipality’s traffic infrastructure. The system would be connected to traffic lights, security cameras, smart roads and much more.

It’s essentially a comprehensive modern and smart traffic management system. Sensors could pick up the impact of an accident, for example, and report that information to a remote agency or even take action via the network. As a result, nearby drivers are informed of the crash, traffic lights are changed to reflect the issue, and vehicles are rerouted until the area is cleaned up.

The technology can also be used for public road services like tollway, bridge and tunnel management — and even parking meters in urban areas.

Smarter Parking

Imagine pulling up to a parking meter, paying your fee on a mobile app, and then exiting your vehicle to be on your way. Upon your return, you simply hop in your car, tell the meter you’re leaving and away you go. The system registers the open space and alerts other drivers nearby looking for a space. As a result, the nearby roadways remain clear and less congested.

In urban areas and bustling cities, parking can be a real problem for the entire community. It can cause traffic disruptions and delays, accidents, and even dangerous scenarios — like when a vehicle is parked in front of a fire hydrant or unauthorized area.

Disney’s new parking garages in Disney Springs, Orlando, are a great example of how parking is getting smarter. Each parking row has a series of lights that turn red or green depending on whether or not space is available. As the end of each row is a digital display that shows the number of open spaces. It’s all updated in real-time so drivers can find a space quickly without driving around aimlessly. The system can also be used to locate vehicles for guests who are lost.

Supply Chain Management

In addition to self-driving transport vehicles and fleets, various other forms of transport in the supply chain are being outfitted with IoT technologies. This includes shipping trucks, containers, boats and ships, planes and more.

This provides a great deal of insight for management crews about travel times and external factors such as traffic or weather events. As with public transport, technology can be used to make more efficient use of resources like fuel as well as cut down on overall waste. More importantly, it can be used to identify new routes, transport solutions and even operational improvements.

Smart, Connected Technologies Are the Future

In the consumer market, IoT devices can help homeowners use their power supply more efficiently by cutting down on consumption, making better use of it in general and offering several new functions. Smart thermostats, for example, can auto-regulate heating and cooling in the home to make the space more comfortable and also eliminate excess use of electricity.

The same thing is happening in transportation, only on a much greater level. When an entire public transport operation is outfitted with more efficient vehicles and fuel-measuring sensors, for instance, the impact is much larger.

This shows that IoT and related connected technologies are not just a fad confined to modern-day operations — they are absolutely going to shape the future of the world. Backed by powerful data and insights, the organizations of tomorrow will be more efficient, more sustainable and much less impactful on the environment.