The Price of Large-Scale Solar Keeps Dropping

JOHN ROGERS, SENIOR ENERGY ANALYST, CLEAN ENERGY | SEPTEMBER 13, 2018, 11:49 AM EST
View the original article here.

PV modules at the Kerman site near Fresno, California
The latest annual report on large-scale solar in the U.S. shows that prices continue to drop. Solar keeps becoming more irresistible.

The report, from Lawrence Berkeley National Laboratory (LBNL) and the US Department of Energy’s Solar Energy Technologies Office, is the sixth annual release about the progress of “utility-scale” solar. For these purposes, they generally define “utility-scale” as at least 5 megawatts (three orders of magnitude larger than a typical residential rooftop solar system). And “solar” means mostly photovoltaic (PV), not concentrating solar power (CSP), since PV is where most of the action is these days.

Here’s what the spread of large-scale solar looks like:

Solar Drop 2

In all, 33 states had solar in the 5-MW-and-up range in 2017—four more than had it at the end of 2016. [For a cool look at how that map has changed over time, 2010 to 2017, check out this LBNL graphic on PV additions.]

Watch for falling prices

Fueling—and being fueled by—that growth are the reductions in costs for large-scale projects. Here’s a look at power purchase agreements (PPAs), long-term agreements for selling/buying power from particular projects, over the last dozen years:

Solar Drop 3

And here’s a zoom-in on the last few years, broken out by region:

Solar Drop 4

While those graphs show single, “levelized” prices, PPAs are long-term agreements, and what happens over the terms of the agreements is worth considering. One of the great things about solar and other fuel-free electricity options is that developers can have a really good long-term perspective on future costs: no fuel = no fuel-induced cost variability. That means they can offer steady prices out as far as the customer eye can see.

And, says LBNL, solar developers have indeed done that:

Roughly two-thirds of the contracts in the PPA sample feature pricing that does not escalate in nominal dollars over the life of the contract—which means that pricing actually declines over time in real dollar terms.

Imagine that: cheaper over time. Trying that with a natural gas power plant would be a good way to end up on the losing side of the contract—or to never get the project financed in the first place.

Here’s what that fuel-free solar steadiness can get you over time, in real terms:

Solar Drop 5

What’s behind the PPA prices

So where might those PPA price trends be coming from? Here are some of the factors to consider:

Equipment costs. Solar equipment costs less than it used to—a lot less. PPAs are expressed in cost per unit of electricity (dollars per megawatt-hour, or MWh, say), but solar panels are sold based on cost per unit of capacity ($ per watt). And that particular measure for project prices as a whole also shows impressive progress. Prices dropped 15% just from 2016 to 2017, and were down 60% from 2010 levels.

Solar Drop 6

The federal investment tax credit (30%) is a factor in how cheap solar is, and has helped propel the incredible increases in scale that have helped bring down costs. But since that ITC has been in the picture over that whole period, it’s not directly a factor in the price drop.

Project economies of scale. Bigger projects should be cheaper, right? Surprisingly, LBNL’s analysis suggests that, even if projects are getting larger (which isn’t clear from the data), economies of scale aren’t a big factor, once you get above a certain size. Permitting and other challenges at the larger scale, they suggest, “may outweigh any benefits from economies of scale in terms of the effect on the PPA price.”

Solar resource. Having more of the solar happen in sunnier places would explain the price drop—more sun means more electrons per solar panel—but sunnier climes are not where large-scale solar’s growth has taken it. While a lot of the growth has been in California and the Southwest, LBNL says, “large-scale PV projects have been increasingly deployed in less-sunny areas as well.” In fact:

In 2017, for the first time in the history of the U.S. market, the rest of the country (outside of California and the Southwest) accounted for the lion’s share—70%—of all new utility-scale PV capacity additions.

The Southeast, though late to the solar party, has embraced it in a big way, and accounted for 40% of new large-scale solar in 2017. Texas solar was another 17%.

But Idaho and Oregon were also notable, and Michigan was one of the four new states (along with Mississippi, Missouri, and Oklahoma) in the large-scale solar club. (And, as a former resident of the great state of Michigan, I can attest that the skies aren’t always blue there—even if it actually has more solar power ability than you might think.)

Capacity factors. More sun isn’t the only way to get more electrons. Projects these days are increasingly likely to use solar trackers, which let the solar panels tilt face the sun directly over the course of the day; 80% of the new capacity in 2017 used tracking, says LBNL. Thanks to those trackers, capacity factors themselves have remained steady in recent years even with the growth in less-sunny locales.

What to watch for

This report looks at large-scale solar’s progress through the early part of 2018. But here are a few things to consider as we travel through the rest of 2018, and beyond:

  • The Trump solar tariffs, which could be expected to raise costs for solar developers, wouldn’t have kicked in in time to show up in this analysis (though anticipation of presidential action did stir things up even before the tariff hammer came down). Whether that signal will clearly show in later data will depend on how much solar product got into the U.S. ahead of the tariffs. Some changes in China’s solar policies are likely to depress panel prices, too.
  • The wholesale value of large-scale solar declines as more solar comes online in a given region (a lot of solar in the middle of the day means each MWh isn’t worth as much). That’s mostly an issue only in California at this point, but something to watch as other states get up to high levels of solar penetration.
  • The investment tax credit, because of a 2015 extension and some favorable IRS guidance, will be available to most projects that get installed by 2023 (even with a scheduled phase-down). Even then it’ll drop down to 10% for large-scale projects, not go away completely.
  • Then there’s energy storage. While the new report doesn’t focus on the solar+storage approach, that second graphic above handily points out the contracts that include batteries. And the authors note that adding batteries doesn’t knock things completely out of whack (“The incremental cost of storage does not seem prohibitive.”).

And, if my math is correct, having 33 states with large-scale solar leaves 17 without. So another thing to watch is who’s next, and where else growth will happen.

Many of the missing states are in the Great Plains, where the wind resource means customers have another fabulous renewable energy option to draw on. But solar makes a great complement to wind. And the wind-related tax credit is phasing out more quickly than the solar ITC, meaning the relative economics will shift in solar’s favor.

Meanwhile, play around with the visualizations connected with the new release (available at the bottom of the report’s landing page), on solar capacity, generation, prices, and more, and revel in solar’s progress.

Large-scale solar is an increasingly important piece of how we’re decarbonizing our economy, and the information in this new report is a solid testament to that piece of the clean energy revolution.

Eggshells May Power The Renewable Energy Revolution

View the original article here.

Ready for some happy news among all the gloom surrounding government shutdowns, border security, and malfeasance in high places? Here’s something that may put a smile on your face. According to researchers in Western Australia, eggshells may be the key to abundant, inexpensive energy storage.
Eggshell_001

Dr Manickam Minakshi and his colleagues began experimenting with eggshells in 2017 using eggs purchased at the local supermarket. “Eggshells have a high level of calcium carbonate, which can act as a form of replenishing energy,” he tells the Canberra Times.

“What’s interesting is that the egg membrane around the yolk allowed us to cook it at a high temperature, crush it into powder and bake it at 500 degrees Celsius with the chemical still present.The final baking process changes the chemical composition from calcium carbonate to calcium oxide and allows it to become a conduit for electricity.

For Dr Minakshi’s team, this represents a first step towards work on an alternative battery to store energy from renewable energies such as solar panels and wind turbines. “Renewable energy resources are intermittent as they depend on the weather,” he says. “When we have an excess, we need a battery to store it. Ground egg shells serve as the electrode to store this.” Before being heated, the eggshell is a positive electrode but when heated it changes to be a negative electrode, he explains.

Dr Minakshi says he hopes his research will attract the attention of renewable energy companies. Assuming further tests prove the validity of his preliminary results, abundant and affordable materials like eggshells have the potential to provide energy storage from items that would otherwise be little more than bio-waste.

“You can buy them at a 12-pack from Coles for $4 or pick them up from the food court,” he says. “What’s even more important is that you can use the eggshells that are thrown into landfills. This brings in the potential to reduce the amount of bio-waste we produce.”

The research in the laboratory will continue to determine how much electricity the eggshell powder can store and for how long. Minakshi even has plans to test free range eggshells to see if they have better conductive properties, although why that would be is not clear. Perhaps free range chickens have higher levels of self esteem which lead to chemical changes in their eggs.

If anyone can peck out the answers, it is Dr. Manakshi, who may or may not have watched the adventures of Henry Cabot Henhouse III — a/k/a Super Chicken — as a boy. (There is a slight possibility I am not treating this topic with the seriousness is deserves.)

Warren Buffet’s MidAmerican Energy puts in Iowa’s latest big battery project

Grand Ridge, an existing Invenergy project that combines wind power and energy storage, in Illinois. Image: Invenergy.

Grand Ridge, an existing Invenergy project that combines wind power and energy storage, in Illinois. Image: Invenergy.

View the original article here.
The US state of Iowa got its first grid-scale solar-plus-storage system at the beginning of this year, and this has already been followed by the completion of another, larger battery project in the US state this week.

Energy-Storage.news reported last week on the completion of a solar PV system at Maharishi University of Management equipped not only with solar trackers but also with a 1.05MWh flow battery.

This week, project developer Invenergy said a four month “construction sprint” had been successfully undertaken and the company has begun commercial operations of a 1MW / 4MWh lithium iron phosphate battery energy storage system.

Located at a substation in Knoxville, Iowa, the project has been executed for utility MidAmerican Energy, one of billionaire investor Warren Buffet’s companies as a subsidiary of Berkshire Hathaway Energy. MidAmerican serves just under 800,000 electricity customers.

In a November press release, MidAmerican’s VP of resource development said the utility-scale storage system would teach lessons about “how best to use an energy storage system, and how it can serve our customers in the future,” adding that the primary purpose of the system will be to help manage peak loads on the utility’s network.

“Energy storage has the potential to allow us to retain energy when customer demand is low and release it during peak usage times. That would give us new options to manage peak loads, enhance overall reliability and help keep electric costs low and affordable for our customers,” Mike Fehr of MidAmerican Energy said.

The utility highlighted four of the main benefits of energy storage that it will explore through the application of the lithium system: flattening and managing peaks in electricity demand through storing off-peak energy for later use, reducing the required run times and capacities of natural gas peaker plants with energy storage, enhancing the value and usefulness of renewable energy through smoothing the output of solar farms before it enters the grid and improving power quality and extending the life of transformers and other grid infrastructure.

“Energy storage is still in the development stages and the economic feasibility on a larger scale is being assessed as well; however, prices are trending downward,” Mike Fehr said.

“MidAmerican Energy wants first-hand experience with the technology so we’re positioned to quickly and efficiently add it to our system in ways that benefit our customers when the price is right.”

For Invenergy, which already owns and operates four other large-scale battery systems it developed, this has been its first project as an EPC (engineering, procurement and construction) partner.

“We are excited by the new opportunities for battery storage that we are seeing around the country. We are grateful for partners like MidAmerican Energy who are seeking innovative ways to deliver value to their customers and are proud to have provided them with this solution in such a short time,” Invenergy senior VP Kris Zadlo said.

C-PACE Flips The Script On Energy Efficiency For Multi-Tenant Commercial Properties

By Counterpointe Energy Solutions
You can view the original article here.

Screen Shot 2018-12-14 at 10.47.12 AM

Historically, making energy efficiency improvements to buildings has been uneconomic for owners of commercial real estate. There are structural reasons why leased commercial properties have traditionally lagged all other properties types in terms of energy efficiency. The results? Billions of dollars of inefficiencies, hurting the environment as well as most companies bottom lines. “Energy use in buildings is a $400bn to $500bn a year problem,” according to Stephen Selkowitz of the Lawrence Berkeley National Laboratory. Worse, tenants are inhabiting buildings with outdated infrastructure for seemingly no reason. These problems are well-understood, and the solutions are readily available, so what is holding commercial properties back?

THE SPLIT INCENTIVE

Common types of commercial leases, such as triple net or modified gross leases, make tenants responsible for energy bills. As a result, the benefits of any reductions in operating costs from energy efficiency upgrades accrue to tenants. As great as that is for the tenant, it leaves the property owner holding the bag and bearing the total cost of those capital improvements. So not surprisingly, property owners have virtually no reason to invest in improvements. They utilize equity for no return. This conundrum is known as “the split incentive”. Given this raw deal, it is no wonder that property owners have been reluctant to engage in energy efficiency projects.

PACE IS THE SOLUTION

Enter Commercial Property Assessed Clean Energy (C-PACE), an innovative financing option that can be used to finance 100% of renewable energy, energy efficiency and resiliency improvements to commercial properties. PACE financing also covers all development and soft costs, so there are no out-of-pocket expenses for the property owner. C-PACE solves the split incentive problem and uses the commercial lease structure to the owner’s advantage. Since it is an assessment, not a loan, C-PACE payments are paid with property taxes. And in most triple net and modified gross leases, tenants pay their share of property taxes. So now, the tenant who benefits from the upgrade is also responsible for repayment – thereby solving the split incentive problem.
For property owners, C-PACE is a definite win. They get to upgrade their assets, with no out-of-pocket expenses. The improved properties have lower energy bills, resulting in lower operating expenditures and higher valuations. The properties can also be marketed as “green”, allowing owners to take advantage of any rent premiums for environmentally friendly buildings, as well as better cap rates upon sale

Recently upgraded buildings are also an added selling point when attracting new tenants and buyers. For example, the World Green Building Council reported in 2016 that greener retail buildings correlate with happier customers and higher revenues for stores. When it comes time to find new tenants or renegotiate terms of a lease, property owners will benefit handily from having made a C-PACE assessment.

Tenants also benefit from C-PACE. Most C-PACE programs require energy efficiency improvements to have a savings-to-investment ratio greater than one. This means that tenants should be able to make each C-PACE repayment with only the funds they have saved from lower energy bills – and still have cash left over that they can pocket. Tenants additionally get to inhabit improved buildings with brand new HVAC, windows, chillers, and other features.

The community likewise benefits from the environmental impact of C-PACE. Energy efficiency reduces the emissions of greenhouse gases, minimizing smog and asthma-inducing particles and diminishes the need for environmentally disruptive fossil fuel extraction methods.
Energy efficiency has long been a difficult investment for owners of commercial real estate. C-PACE flips this script – energy efficiency projects are now not only a good idea but are a slam dunk for commercial property owners.

PACE for Nonprofit-owned Buildings: Cutting Energy Costs to Serve Communities

By Bracken Hendricks
You can view the original article here.

Every day nonprofit community-based institutions work hard to raise money and deliver mission-driven programs and services. Whether providing affordable housing for the homeless, assisting at-risk youth in gaining job skills in public charter schools, or ministering to the conscience of a community in houses of worship, these institutions regularly push their internal capacity and strain their budgets just to advance a public mission of service.

When choosing to install new energy saving technology like more efficient lighting or boilers, or upgrading to renewable energy with solar panels, the choice too often comes down to a trade-off between using scarce capital resources to either upgrade their physical plant or carry out their mission.

Financing building improvements using Property Assessed Clean Energy (PACE) can enable nonprofits to overcome these upfront cost barriers and easily access capital that is paid for over time through savings on utility bills. PACE offers low interest rates, long terms to minimize payments, and a solid value proposition for mission driven organizations.  That’s a good deal not only for the community, but for local clean energy businesses, the regional economy, and our shared environment.

Today, PACE programs in Washington DC and New York State can provide important lessons to help other communities around the nation access these benefits from what we call “Civic PACE”.  Both Energize NY and Urban Ingenuity are finding that the nonprofit sector is a huge opportunity for clean energy sector growth. Considered part of the commercial building stock, most nonprofits have underinvested in energy related improvements.

These community-based organizations often have constrained budgets, substantial deferred maintenance challenges, and very large unmet capital investment needs.  Nonprofits are typically underserved in debt markets because they have unusual forms of credit or cash flows, making PACE an ideal mechanism to finance building upgrades because it attaches to the land record of the property not the credit of the borrower. For this reason, nonprofit properties frequently have low debt levels, further simplifying PACE underwriting by reducing the need for lender consent to establish a special PACE tax assessment.

Although PACE is a powerful tool for nonprofit institutions, it has not been widely available or accessible to these critical community-based institutions… until now. The cost of capital can be a major factor for institutions that low priced debt. In order to serve this important market, it is essential to structure creative financing solutions that bring down pricing for nonprofits.

With support from the U.S. Department of Energy’s Sunshot Initiative, The Solar Foundation, Urban Ingenuity, and Clean Energy Solutions Inc. (CESI) are working with program administrators across the country to open up the nonprofit market beyond Washington DC. Through outreach and collaboration, the team is working to demonstrate the viability of using PACE with HUD-assisted multifamily housing, the value of PACE-secured PPAs for non-profit solar projects, tax-exempt bond financing considerations, and other creative credit enhancements.  The team is finding opportunities to build this market to use PACE financing to expand deployment of solar energy and energy efficiency projects for nonprofit organizations, working closely with houses of worship and local Public Housing Authorities in Washington DC, New York, and many other communities around the country to make low-cost, long-dated debt and appropriate equity available for PACE projects.

For example, in the District of Columbia, Urban Ingenuity is currently structuring credit enhancements and tax-exempt PACE capital to bring down interest rates. They are currently closing a tax-exempt PACE note at less than 4% for 20 year debt, representing perhaps the first tax-exempt PACE financing, and demonstrating a new potential opportunity for PACE investment.

In New York, Energize NY has used Qualified Energy Conservation Bonds (QECBs) to bring down the cost of clean energy upgrades to under 3% for 20 year funds, as well as offering direct property owner support to help overcome the capacity gap that is a common barrier to upgrades in this sector.  In addition, New Market Tax Credits (NMTC) and other forms of innovative, low-cost capital are available to credit-enhance PACE notes.

Nonprofit owned buildings are not currently well served by solar tax equity markets; these markets are not always transparent for consumers, and the pricing and structure is traditionally designed to benefit the investor and developer, instead of maximizing the flow of resources to advance a non-profit’s mission. The PACE-secured PPA, on the other hand, reduces credit risk, drives transparency in solar markets, and presents improved pricing and terms for customers. DC PACE has proven a “pre-paid PPA” approach, and Energize NY is close to closing three PPA’s with non-profits and others unable to take advantage of federal tax credits.

More broadly, NY State is addressing the challenges facing non-profits and Low and Moderate Income (LMI) housing by supporting Energize NY PACE financing as well as through the State’s energy agency (NYSERDA) and a range of utility initiatives. These efforts combine to form a compelling package that can include direct project support, financing with long-terms and low interest rates, and energy upgrade standards that encourage improvements which provide significant financial gain to LMI housing and other non-profit customers.

The energy burden is disproportionately high for almost all nonprofits and especially for affordable housing owners who struggle with balancing operating needs and serving their mission.  Reducing energy costs and consumption make good financial sense for these property owners, and accessing upfront capital to pay for needed project level investments, paid for over time with utility savings, is one key piece of the solution. Now, with PACE, which can be enhanced through QECBs or other tools and paired with direct incentives, nonprofits can access the capital they desperately need to improve their property while saving money to advance their mission, foster public welfare and a higher quality of life while giving back to communities in ways that extend well beyond greening the environment and protecting global climate.

 

Five Financial Benefits of Using C-PACE (In Language Your CFO Will Understand…)

By Larry Derrett, Founder, EnFlux Building Solutions
You can view the original publishing of this article here.

CPACE
The C-PACE funding program has grown extensively and has the potential to become a game changer for the funding of energy efficiency projects. The market potential is immense, and the benefits of the program are compelling. But it is relatively underutilized. For the program to accelerate its growth, constant messaging is required for building owners, contractors and legislators to learn about the benefits of the program. Out of all these stakeholders, perhaps the building owner’s CFO is the most important target as they are the key decision maker when considering this type of funding.

My goal here is to provide a snapshot of the financial benefits of using C-PACE. This article is purposefully narrow in scope and is written in the CFO’s language.

C-PACE Testimonial

As of June 30, 2018, building owners have chosen the C-PACE program to fund 1,790 projects. That’s a 75% increase above the 1,020 projects closed through the end of 2016. However, it’s just the tip of the iceberg for C-PACE’s market potential. Financial decision makers all over the US have validated the benefits of C-PACE 1,790 times. That says something about the program.

“As a former CFO, I would not hesitate to recommend C-PACE to the CEO, board or investors. The benefits are compelling.”

Why? Let’s look at five reasons.                                                                     

#1. Increase Net Cash Flow from Efficiency Retrofits

C-PACE funding is repaid through a 20+ year assessment to a building which is collected similarly to traditional property taxes. This causes annual payments to be very low, especially when compared to 5- or 7-year traditional financing. As a result, energy and maintenance savings will exceed the annual C-PACE assessment for virtually any pure efficiency retrofit. In other words, if companies use C-PACE to fund pure equipment retrofits, their cash flow will increase.

The positive net cash flow can also ease the ability of commercial office building owners to pass along the costs and benefits of a retrofit to tenants. That’s because it’s easier to demonstrate savings will cover financing costs spread over 20 years versus a more traditional repayment period of ~ 7 years.

This is a win-win. Building owners receive an upgrade to the building that could last 15 to 20 years. Tenants enjoy lower overall net expenses and a more comfortable work environment.

What is outlined above is reason enough for many to use this type of funding. But that’s just scratching the surface…

#2. No Acceleration of the Assessment

The C-PACE lender is not allowed to accelerate the full amount owing even if a scheduled payment is past due. Only the unpaid amount that has been billed but not paid is recoverable. This is a very small amount when compared to the capital involved in a total debt restructuring. Therefore, it should not carry enough voting power to complicate the restructuring process.

#3. Freedom to Sell the Building

The C-PACE lender does not have approval rights regarding a sale. That’s because the assessment is an attachment to the building and becomes an obligation of the buyer. This eases how owners can optimize holdings, particularly for larger commercial real estate developers.

#4. Absence of Constraints Typically Imposed by a Lender

The C-PACE lender does not impose traditional lender protections such as quarterly reporting, maintenance of debt covenants or similar requirements. There is no need for an inter-creditor agreement and the building owner has one less creditor to deal with in case of a debt restructuring.

#5. Reduced Weighted Average Cost of Capital

This applies primarily to new construction and major renovations where the project is part of a new or restructured capital deck. The concept is simple – to the extent lower cost C-PACE funding can be used in lieu of higher cost equity (common or preferred) or traditional mezzanine debt, it lowers the overall cost of capital to building owners.

As mentioned earlier, an important element in C-PACE’s continued growth is for CFOs to understand the financial benefits of the program. You can help get the word out by sharing this article with financial decision makers in your network. If they are not familiar with C-PACE, they will appreciate the heads up. And please comment below if you have encountered additional financial drivers for embracing C-PACE.

Don’t Confuse the Causes and Solutions of Climate Change with Sea Level Rise

By John Englander
View the original article here.

With the growing awareness of the threat from rising seas, there is a fundamental point of confusion. It is widely believed that “green projects,” energy efficiency, and better public transportation can “solve sea-level rise.”

This popular notion is even showing up in candidates’ platforms for the upcoming election. It is simply wrong.

The warming of the planet, now about 1.5 degrees Fahrenheit over the last century and headed for at least double that level, correlates with increased carbon dioxide levels in the atmosphere from fossil fuel use — the so-called greenhouse effect. Even the controversial 2015 Paris Climate Agreement only aims to keep the temperature rise to 50 percent further warming, and recognizes we are not instituting the changes to reach even that modest goal.

Efforts to slow and reverse that warming should be our highest priority. Those efforts should focus on reducing energy consumption and switching to renewable sources, such as solar energy. Improved mass transit, electric vehicles, and more use of bicycles are all efforts that will contribute to slow the warming.

Also, developing technology to remove carbon from the atmosphere or lock carbon in plant matter — trees, the Everglades and even algae — can help reduce the warming atmosphere. But none of those efforts can soon stop sea-level rise.

Rising sea level is primarily caused by the melting of the ice sheets on Greenland and Antarctica, which is happening at an accelerating rate because of the extraordinary heat alreadystored in the oceans. The oceans also expand slightly as they continue to warmThose two causes of rising sea level cannot be stopped in the next few decades, even if the entire world could magically switch to 100 percent solar energy right now.

Our oceans, atmosphere, and planet have gotten warmer primarily because the heat-trapping CO2 (carbon dioxide) level is now 410 PPM (Parts per million), 40 percent higher than any time in the last 10 million years.

That greater atmospheric insulation adds heat to the sea equivalent to four nuclear bombs every second of every day. Like a giant outdoor swimming pool, the ocean retains heat even if the air temperature cools. That extra ocean heat will continue to affect our weather and melt glaciers for many decades, even if we can slow the warming.

The latest projections from International and national science organizations and the Southeast Florida Regional Climate Change Compactsay that we need to plan for a few feet of higher sea level by mid-century and as much as 6 to 8 feet by the end of the century.

Thus, it is imperative that we now separate three quite distinct problems and solutions. A solution to one will not soon have any effect on the other two.

  1. Reduce emission of greenhouse gases and even remove them from the atmosphere. SOLUTIONS: Energy conservation, switch to renewable energy sources, improve public transportation, promote bicycle use, plant trees and develop affordable technologies to take carbon dioxide out of the atmosphere.
  2. Prepare for extreme weather events. More heat in the oceans and atmosphere produces stronger storms, more rainfall, droughts, and wildfires. SOLUTIONS: Buildings, infrastructure, and building codes should be designed to accommodate periodic flooding, improve drainage, use less energy, etc.
  3. Adapt for rising sea level:  Higher sea level will change coastlines and marshlands all over the world and means ever increasing high tides and worse temporary flooding from storms, rainfall and runoff. SOLUTIONS: Elevate buildings and infrastructure (better building codes), install temporary flood barriers for extreme events, and ultimately, accept that coastlines will change.

Our futures require that we design and implement personal, community, and governmental policies to respond to these three threats: elevated greenhouse gases, extreme weather events, and sea level rising ever-higher.

It is great to see that politicians, the public, and professionals are developing greater concern for climate change and rising sea level. Recognizing that these three challenges demand separate solutions is the only smart path forward — and upwards.

 

John Englander is an oceanographer and author of “High Tide On Main Street.”  He is also President of The International Sea Level Institute, a new nonprofit think tank and policy center. His weekly blog and news digest can be found at www.sealevelrisenow.com

 “The Invading Sea” is a collaboration of four South Florida media organizations — the South Florida Sun Sentinel, Miami Herald, Palm Beach Post and WLRN Public Media.

 

In-depth Q&A: The IPCC’s special report on climate change at 1.5C

The original article was written by the Carbon Brief Staff on 8/10/18. You can view it here.

Earlier today in South Korea, the Intergovernmental Panel on Climate Change (IPCC) published its long-awaited special report on 1.5C.

The IPCC is a body of scientists and economists – first convened by the United Nations (UN) in 1988 – which periodically produces summaries of the “scientific basis of climate change, its impacts and future risks, and options for adaptation and mitigation”.

The reports are produced, in the first instance, to inform the world’s policymakers.

In this detailed Q&A, Carbon Brief explains why the IPCC was asked to produce a report focused on 1.5C of global warming, what the report says and what the reaction has been…

Why did the IPCC produce this special report?

For many years, limiting global warming to no more than 2C above pre-industrial levels was the de-facto target for global policymakers. This was formalised when countries signed the Cancun Agreements at the UN’s climate conference in Mexico in 2010.

However, at the climate talks in Bonn in May 2015, the UN published a new report that warned that the 2C limit was not adequate for avoiding some of the more severe impacts of climate change.

The report – a product of a two-year “structured expert dialogue” (SED) involving more than 70 scientists – found that 2C of warming was not a “guardrail up to which all would be safe”. Instead, it recommended that while “science on the 1.5C warming limit is less robust, efforts should be made to push the defence line as low as possible”.

The findings of the SED subsequently fed into the working draft that would form the Paris Agreement. In December 2015, 195 countries endorsed the agreement, which backed a long-term goal to limit global temperature rise to “well below 2C” and to “pursue efforts towards 1.5C”.

As part of the text of the agreement, the UN Convention on Climate Change (UNFCCC) “invited” the IPCC “to provide a special report in 2018 on the impacts of global warming of 1.5C above pre-industrial levels and related global greenhouse gas emission pathways”.

The IPCC accepted this invitation following a meeting in Nairobi in April 2016 and then drafted an outline of the report at their Geneva gathering in August of the same year. This outline was rubber-stamped two months later at a meeting in Bangkok.

A timeline of notable dates in preparing the 1.5C special report (shaded blue) embedded within processes and milestones of the UNFCCC (grey). Credit: IPCC (pdf)

A timeline of notable dates in preparing the 1.5C special report (shaded blue) embedded within processes and milestones of the UNFCCC (grey). Credit: IPCC (pdf)

The author team (pdf) for the report – including review editors – was made up of 91 scientists and policy experts drawn from 44 nationalities. The country most represented was the US with seven authors, followed by Germany with six and the UK with five.

The report, published today following a week-long meeting in Incheon in South Korea, draws on scientific literature from across all three of the IPCC’s “working groups”. However, the authoring was led by the technical support unit of the IPCC’s Working Group I (WG1), which focuses on assessing the physical scientific basis of the climate system and climate change.

The report writing process began with a first author meeting in Sao José dos Campos, Brazil, in March 2017. Three author meetings, three report drafts and 42,000 reviewer comments later, the final report was submitted.

The report has two main parts: a full technical report and a short summary for policymakers (SPM). The wording of the latter was agreed line-by-line by government delegates last week in Incheon. Following the approval of the SPM, there are some updates that need to be made to the full report to ensure it is consistent with the revised SPM. These have not been yet made and so the individual chapters are subject to changes listed in the “trickle-back” document (pdf).

How far away is 1.5C of warming?

Global average temperatures have already warmed by around 1C since pre-industrial times (taken as 1850-1900 by the IPCC). However, the rate of warming is not consistent across the Earth’s surface, as the SPM notes:

“Warming greater than the global annual average is being experienced in many land regions and seasons, including two to three times higher in the Arctic. Warming is generally higher over land than over the ocean.”

In fact, chapter one (pdf) of the report notes that 20-40% of the global population live in regions that have already experienced warming of more than 1.5C in at least one season.

This is illustrated in a group of maps found in the same chapter, which show regional warming (in 2006-15) as an annual average and for the winter and summer seasons. The red and purple shading highlights that much of the high latitudes in the northern hemisphere have already exceeded the 1.5C of warming.

Maps of regional human-caused warming for 2006-15, relative to 1850-1900, annual average (top), the average of December, January and February (bottom left) and for June, July and August (bottom right). Shading indicates warming (red and purple) and cooling (blue). Credit: IPCC (pdf)

Maps of regional human-caused warming for 2006-15, relative to 1850-1900, annual average (top), the average of December, January and February (bottom left) and for June, July and August (bottom right). Shading indicates warming (red and purple) and cooling (blue). Credit: IPCC (pdf)

Around 100% of this warming is the result of human activity, the SPM says:

“Estimated anthropogenic global warming matches the level of observed warming to within ±20%.”

At current rates, human-caused warming is adding around 0.2C to global average temperatures every decade. This is the result of both “past and ongoing emissions”, the report notes.

If this rate continues, the report projects that global average warming “is likely to reach 1.5C between 2030 and 2052”.

Note that this is not referring to the first time that global average temperatures in a single year hit 1.5C above pre-industrial levels. Natural influences in the global climate – such as variability in the oceans – could temporarily tip temperatures beyond the 1.5C limit. (Similarly, factors such as a large volcanic eruption could suppress global temperatures in the short term.) What the special report is referring to is the point where long-term, human-caused warming reaches 1.5C, with these natural influences taken out.

This is illustrated in the chart from the SPM below, which shows global temperatures, relative to pre-industrial levels. The black line shows the fluctuations of global monthly temperatures to date, which includes the influence of natural variability. The red line shows the estimate of human-caused warming, which shows a more gradual increase. The grey, blue and purple shading illustrate different pathways to keeping warming to no more than 1.5C in 2100.

 

Chart shows observed monthly temperatures (black line), estimated human-caused warming (red), and idealised potential pathways to meeting 1.5C limit in 2100 (grey, blue and purple). All relative to 1850-1900. Credit: IPCC (pdf)

Chart shows observed monthly temperatures (black line), estimated human-caused warming (red), and idealised potential pathways to meeting 1.5C limit in 2100 (grey, blue and purple). All relative to 1850-1900. Credit: IPCC (pdf)

Past greenhouse gas emissions are unlikely to be enough by themselves to push global warming from 1C to 1.5C in the coming decades, the report notes, meaning that if emissions stopped today, the 1.5C limit would not be breached.

However, at the same time, the global emissions to date “will persist for centuries to millennia”, the report says, “and will continue to cause further long-term changes in the climate system, such as sea level rise, with associated impacts”.

(To see how every part of the world has already warmed – and could continue to warm under a range of different scenarios  – see Carbon Brief’s new searchable map.)

 How do the impacts of climate change compare between 1.5C and 2C?

Since the inclusion of the 1.5C limit in the Paris Agreement, there has been something of a flurry of research into the impacts of 1.5C of warming on the planet.

In fact, as Prof Piers Forster – professor of physical climate change at the University of Leeds and a lead author on chapter two of the special report – wrote in a Carbon Brief guest post at the end of the Paris talks, “climate scientists were caught napping” by the 1.5C limit:

“Before Paris, we all thought 2C was a near-impossible target and spent our energies researching future worlds where temperatures soared. In fact, there is still much to discover about the specific advantages of limiting warming to 1.5C.”

In a recent interactive article, Carbon Brief presented the findings of around 70 peer-reviewed studies showing how the potential impacts of climate change compare at 1.5C, 2C and beyond. The data covers a range of impacts – such as sea level rise, crop yields, biodiversity, drought, economy and health – for the world as a whole, as well as specific regions.

In the special report on 1.5C, chapter one (pdf) notes that climate impacts are already being observed on land and ocean ecosystems, and the services they provide:

“Temperature rise to date has already resulted in profound alterations to human and natural systems, bringing increases in some types of extreme weather, droughts, floods, sea level rise and biodiversity loss, and causing unprecedented risks to vulnerable persons and populations.”

The people that have been most affected live in low- and middle-income countries, the report says, some of whom have already seen a “decline in food security, linked in turn to rising migration and poverty”. Small islands, megacities, coastal regions and high mountain ranges are also among the most affected, the report adds.

In general – and, perhaps, unsurprisingly – the potential impacts of global warming “for natural and human systems are higher for global warming of 1.5C than at present, but lower than at 2C”, the SPM says. The risk are also greater if global temperatures overshoot 1.5C and come back down rather than if warming “gradually stabilises at 1.5C”.

There are a lot of impacts to consider, which is reflected in the fact that chapter three(pdf) on impacts is the longest of the whole report at 246 pages.

In many cases, the IPCC has “high confidence” that there is a “robust difference” between impacts at 1.5C and 2C – such as average temperature, frequency of hot extremes, heavy rainfall in some regions and the probability of drought in some areas.

As an illustration, the report includes a “reasons for concern” graphic that shows how the risks of severe impacts varies with warming levels. The example below shows a section of this graphic showing some of these impacts. The coloured shading indicates the risk level, from “undetectable” (white) up to “very high” (purple).

The graphic shows how warm water corals and the Arctic are particularly at risk from rising temperatures, moving into the “very high” category with 1.5C and 2C of warming, respectively.

How the level of global warming affects impacts and/or risks associated for selected natural, managed and human systems. Adapted from IPCC (pdf)

How the level of global warming affects impacts and/or risks associated for selected natural, managed and human systems. Adapted from IPCC (pdf)

Tropical coral reefs actually get their own specific section in Box 3.4 in chapter three, which emphasises that at 2C of warming, coral reefs “mostly disappear”. However, even achieving 1.5C “will result in the further loss of 90% of reef-building corals compared to today”, the report warns. And short periods (i.e. decades) where global temperatures overshoot 1.5C before falling again “will be very challenging to coral reefs”.

For the Arctic, the report expects that “there will be at least one sea-ice free Arctic summer out of 10 years for warming at 2C, with the frequency decreasing to one sea-ice-free Arctic summer every 100 years at 1.5C”. Interestingly, the report also notes that overshooting 1.5C and coming back down again would “have no long-term consequences for Arctic sea-ice coverage”.

Warming of 1.5C will also see weather extremes become more prevalent across the world, the report says. Increases in hot extremes are projected to be largest in central and eastern North America, central and southern Europe, the Mediterranean region, western and central Asia, and southern Africa. Holding warming to 1.5C rather than 2C will see around 420 million fewer people being frequently exposed to extreme heatwaves, the report notes.

High and low extremes in rainfall are also expected to become more frequent, the report says. The largest increases in heavy rainfall events are expected in high-latitude regions, such as Alaska, Canada, Greenland, Iceland, northern Europe and northern Asia. Whereas in the Mediterranean region and southern Africa, for example, “increases in drought frequency and magnitude are substantially larger at 2C than at 1.5C”.

For global sea levels, increases are projected to be around 0.1m less at 1.5C than at 2C come the end of the century, the report notes, which would mean that “up to 10.4 million fewer people are exposed to the impacts of sea level globally”. However, sea levels will continue to rise beyond 2100, the report says, and there is a risk that instabilities in the Greenland and Antarctic ice sheets triggered by 1.5–2C of warming cause “multi-metre” increases in sea levels in the centuries and millennia to come.

Sea level rise is particularly pertinent for the risks facing small island states, which are covered in Box 3.5. The combination of rising seas, larger waves and increasing aridity“might leave several atoll islands uninhabitable” under 1.5C, the report warns.

Another topic given its own specific box is food security (“Cross-Chapter Box 6”), which is affected in various different ways by climate change, the report says:

“Overall, food security is expected to be reduced at 2C warming compared to 1.5C warming, due to projected impacts of climate change and extreme weather on crop nutrient content and yields, livestock, fisheries and aquaculture, and land use (cover type and management).”

Climate change can exacerbate malnutrition by reducing nutrient availability and quality of food products, the report notes. However, in general, “vulnerability to decreases in water and food availability is reduced at 1.5C versus 2C, whilst at 2C these are expected to be exacerbated, especially in regions such as the African Sahel, the Mediterranean, central Europe, the Amazon, and western and southern Africa”.

How quickly do emissions need to fall to meet the 1.5C limit?

Not all 1.5C limits are made equal. In model simulations that translate emissions into atmospheric greenhouse gas concentrations – and, ultimately, to future warming – different emissions pathways take different routes to staying below 1.5C in 2100.

The special report broadly separates these pathways into two categories, as the Frequency Asked Questions section (pdf) of the report explains:

“The first involves global temperature stabilising at or below before 1.5C above pre-industrial levels. The second pathway sees warming exceed 1.5C around mid-century, remain above 1.5C for a maximum duration of a few decades, and return to below 1.5C before 2100. The latter is often referred to as an ‘overshoot’ pathway.”

The charts below illustrate the difference, with an “overshoot” pathway on the left and a stabilisation pathway on the right.

Two main pathways for limiting global temperature rise to 1.5C: stabilising warming at, or just below, 1.5C (right) and warming temporarily exceeding 1.5C before coming back down later in the century (left). Credit: IPCC (pdf)

Two main pathways for limiting global temperature rise to 1.5C: stabilising warming at, or just below, 1.5C (right) and warming temporarily exceeding 1.5C before coming back down later in the century (left). Credit: IPCC (pdf)

Below, as the table from chapter two (pdf) shows, the emissions scenarios used in the report fall into different categories, according to how much they overshoot 1.5C. Notably, only nine of the 90 1.5C scenarios stay below 1.5C for the entire 21st century. The other 81 all overshoot at some point.

This issue led the European Union to reportedly argue last week that overshoot scenarios should not count as aligned with the Paris Agreement’s 1.5C limit.

 

IPCC5

According to the SPM, in order to limit warming to 1.5C with “no or limited overshoot”, net global CO2 emissions need to fall by about 45% from 2010 levels by 2030 and reach “net zero” by around 2050.

In other words, by the middle of this century, the CO2 emitted by human activities needs to be matched by the CO2 deliberately taken out of the atmosphere through negative emissions techniques, such as afforestation and bioenergy with carbon capture and storage (BECCS).

For 2C, CO2 emissions will need to decline by about 20% by 2030 and reach net zero around 2075.

Both the 1.5C and 2C limits would also need similar “deep reductions” in non-CO2 emissions, such as methane and nitrous oxide, the SPM adds.

The graphic below illustrates how steeply CO2 emissions (left) and non-CO2 emissions (right) need to fall for 1.5C. The blue lines and shading show examples of pathways that meet the 1.5C limit with little (0-0.2C) or no overshoot, while the grey shows those where temperatures have a “high” temporary overshoot before coming back down again.

The requirement to reach net zero by 2050 is the same for future pathways with and without overshoot, chapter two notes.

Illustration of the timings of net zero for CO2 for meeting the 1.5C limit under “no or limited overshoot” (blue) and “high overshoot” (grey) scenarios. Also shown are emissions reductions required for methane, black carbon and nitrous oxide (right). Credit: IPCC (pdf)

Illustration of the timings of net zero for CO2 for meeting the 1.5C limit under “no or limited overshoot” (blue) and “high overshoot” (grey) scenarios. Also shown are emissions reductions required for methane, black carbon and nitrous oxide (right). Credit: IPCC (pdf)

So, how do current ambitions to cut emissions compare with these targets?

As part of the Paris Agreement, individual countries and the EU submitted pledges to reduce their emissions, known as “Nationally Determined Contributions”, or “NDCs”. These commitments run up to 2025 or 2030, with the intention that ambition is “ratcheted up” through the century.

However, as they stand, the cumulative emissions reductions are some way off the pathway to 1.5C, says chapter two:

“Under emissions in line with current pledges under the Paris Agreement, global warming is expected to surpass 1.5C, even if they are supplemented with very challenging increases in the scale and ambition of mitigation after 2030.”

Essentially, following such a relatively slow pace of emissions cuts for the next decade or so would would mean emissions need to drop to net zero even earlier – by 2045. And even if that were achieved, holding warming to 1.5C would still not be guaranteed.

As an FAQ from chapter two concludes:

“With the national pledges as they stand, warming would exceed 1.5C, at least for a period of time, and practices and technologies that remove CO2 from the atmosphere at a global scale would be required to return warming to 1.5C at a later date.”

What would it take to limit warming to 1.5C?

Cutting emissions to meet a 1.5C limit would require “rapid and far-reaching transitions” across the global economy, the SPM says.

These transitions would need to transform the way energy is used and the sources it comes from; the way land use and agricultural systems are organised; and the types and quantities of food and material that are consumed. The summary continues:

“These systems transitions are unprecedented in terms of scale, but not necessarily in terms of speed, and imply deep emissions reductions in all sectors, a wide portfolio of mitigation options and a significant upscaling of investments in those options.”

The details of these transformations are set out in more detail in the 113-page chapter two (pdf) of the report and a 99-page technical annex (pdf), based on research using integrated assessment models (IAMs). These IAMs combine different strands of knowledge to explore how human development and societal choices interact with and affect the natural world.

(See Carbon Brief’s in-depth explainer on IAMs for more on what they are and the ways they are limited.)

One “key finding”, says chapter two of the report, is that there are many different ways to meet the 1.5C limit under a wide spread of assumptions about future human and economic development. These pathways reflect different futures in terms of global politics and societal preferences, implying different trade-offs and co-benefits for sustainable development and other priorities.

However, all 1.5C pathways share certain features, including CO2 emissions falling to net-zero and unabated coal use being largely phased out by mid-century. They also include renewables meeting the majority of future electricity supplies, with energy use being electrified and made more efficient.

Investment in unabated coal is “halted” by 2030 in “most” 1.5C pathways, says chapter two. It adds:

“Some fossil investments made over the next few years – or those made in the last few – will likely need to be retired prior to fully recovering their capital investment or before the end of their operational lifetime.”

These changes are even more stark for the electricity sector, which is “virtually full[y] decarbonised…around mid-century”. This means that by 2050, coal use in the power sector falls to “close to 0%” and renewables supply 70-85% of the electricity mix.

Not including bioenergy, renewable deployment in 1.5C pathways increases between six and 14-fold by 2050, compared to 2010. Nuclear energy use increases in “most” 1.5C pathways, the report says – but not in all of them.

In addition, 1.5C pathways all include deep cuts in other greenhouse gases, such as a 35% reduction in methane emissions below 2010 levels by 2050.

“The energy transition is accelerated by several decades in 1.5C pathways compared to 2C pathways,” chapter two explains.

In addition to shifting to zero-carbon electricity, extra reductions in 1.5C versus 2C pathways come mainly from transport and industry, it says, with emissions from industry falling 75-90% below 2010 levels by 2050.

Furthermore, energy demand is tempered to a greater degree by efforts to improve end-use efficiency.

It is worth noting that IAMs have a well-known bias towards technological solutions, such as switching the source of energy supply or adding carbon capture and storage(CCS). Scientists have started to explore other ways to limit warming to 1.5C, for example by radically changing the way energy is used.

Finally, it is worth adding that IAM pathways are only really able to explore what is technically feasible. As explained in a lengthy section of chapter one of the report, this is distinct from what is socially, environmentally, politically or institutionally feasible.

Though some aspects of these broader questions are explored in chapter four (pdf), the report does not – and cannot – say whether it will, ultimately, be possible to avoid 1.5C of warming.

What does the report say about the remaining carbon budget for 1.5C?

One of the key tools that scientists have used in recent years to communicate the urgency of cutting emissions to meet the 1.5C limit is the idea of a “carbon budget”. This is essentially the amount of CO2 the human activity can emit into the atmosphere and still hold warming to the 1.5C limit.

Based on estimates made in the IPCC’s most recent assessment report (“AR5”), published in 2013-14, there were around 120 gigatonnes of CO2 (GtCO2) remaining in the budget from the beginning of 2018 for a 66% chance of avoiding 1.5C warming. That is equivalent to just three years of current global emissions.

However, since AR5 was published, a number of new research papers using different methods have suggested that the 1.5C is actually substantially larger. And as the remaining budget for 1.5C is – by any measure – relatively small, the choice of approach can make quite a difference.

The IPCC’s report takes these new approaches on board and expands the 1.5C budget, pushing it out to 420GtCO2 – equivalent to around 10 years of current emissions.

In a separate analysis piece published today, Carbon Brief has delved into the detail of this new, larger carbon budget and expanded on the reasons behind the shift.

Despite the change, it is worth noting that the key message remains the same: global CO2 emissions need to fall to net-zero by mid-century to avoid 1.5C of warming.

And even with the revised 1.5C carbon budget, it is unlikely to be the end of the debate. There are still a number of large uncertainties remaining, such as how to account for non-CO2 factors, what observational temperature datasets should be used, and whether Earth-system feedbacks, such as melting permafrost, are taken into account.

What role will ‘negative emissions’ play in limiting warming to 1.5C?

The report acknowledges that limiting warming to 1.5C will require the use of “negative emissions technologies” (NETs) – methods that remove CO2 from the atmosphere. In the report, these techniques are referred to as “carbon dioxide removal” (CDR).

To limit global temperature rise to 1.5C without overshoot, some use of NETs will be needed, the SPM notes:

“All pathways that limit global warming to 1.5C with limited or no overshoot project the use of CDR on the order of 100-1,000GtCO2 [billion tonnes] over the 21st century.”

And, if global temperatures do overshoot 1.5C, large-scale use of NETs will be required in order to bring warming back down, Prof Piers Forster told a press briefing:

“I think one of the most of the important things in the terms of this 1.5C report are these high overshooting scenarios where temperatures go above 1.7C and then return to below 1.5C by the end of the century. These scenarios will only be possible if we hugely invest in, scale up and build the technology for CO2 removal.”

It is worth noting that the SPM appears to underestimate the degree to which NETs could be needed in order to limit warming to 1.5C in comparison to the full report, says Dr Oliver Geden, head of the research at the German Institute for International and Security Affairs, who was not a report author. He tells Carbon Brief:

“The SPM states that conventional mitigation is not enough and that there’s an additional need for CDR. Compared to the full report, the SPM paints too rosy a picture on this. The SPM talks about 100-1,000GtCO2 removal by 2100. But the report itself shows a mean CDR value much closer to the upper end of the 100-1,000GtCO2 range.”

The amount of CO2 that will need to be removed using NETs depends on how quickly and effectively cuts are made to global greenhouse gas emissions, the report says.

Even with rapid mitigation efforts, it is likely that NETs will be required to offset emissions from sectors that cannot easily reduce their emissions to zero, researchshows. These sectors include rice and meat production, which produce methane, and air travel.

The degree to which NETs will be needed matters because each of them come with “economic and institutional barriers” – as well as possible impacts on people and wildlife, Prof Heleen de Coninck, a researcher in climate change mitigation and policy from Radboud University in the Netherlands and coordinating lead author of chapter four of the report, told a press briefing.

For instance, several of the NETs would require the world to drastically change the way it uses the land. This includes bioenergy with carbon capture and storage (BECCS) and afforestation.

BECCS involves growing crops, burning them to produce energy, capturing the CO2 that is released during the process and storing it in an underground site. Afforestation, meanwhile, involves turning barren land into forest. Because plants absorb CO2 as they grow, both techniques would effectively remove CO2 from the atmosphere.

However, if these techniques were deployed at scale, they could compete for land with food production and natural habitats, the SPM says:

“Afforestation and bioenergy may compete with other land uses and may have significant impacts on agricultural and food systems, biodiversity and other ecosystem functions and services.”

The charts below show four possible pathways for reaching 1.5C. On the charts, grey shows fossil fuel emissions, while yellow and brown show the emissions reductions achieved by BECCS, and agriculture, forestry and other land use (AFOLU), respectively.

(Note that AFOLU also includes emissions reductions from other land-based NETS, such as natural forest regeneration and soil carbon sequestration.)

Four illustrative scenarios for limiting temperature rise to 1.5C above pre-industrial levels. Grey shows fossil fuel emissions, while yellow and brown show the emissions reductions achieved by BECCS, and agriculture, forestry and other land use (AFOLU), respectively. Source: Summary for Policymakers, IPCC

Four illustrative scenarios for limiting temperature rise to 1.5C above pre-industrial levels. Grey shows fossil fuel emissions, while yellow and brown show the emissions reductions achieved by BECCS, and agriculture, forestry and other land use (AFOLU), respectively. Source: Summary for Policymakers, IPCC

The P1 pathway assumes that the world rapidly reduces its fossil fuel emissions after 2020. This is largely achieved by reducing the global demand for energy, chiefly by switching to more energy-efficient technologies and behaviours. This pathway requires a relatively small amount of negative emissions, which is expected to be achieved via afforestation.

The P2 pathway also sees the world switch towards sustainable and healthy consumption patterns, low-carbon technology innovation, and well-managed land systems – this time with a limited amount of BECCS.

The P3 pathway is a “middle-of-the-road scenario” in which historical social and economic trends continue. Emissions reductions are mainly achieved by changing the way in which energy is produced and to a lesser degree by reductions in demand. This scenario requires a relatively large amount of BECCS.

The P4 pathway is a “resource and energy-intensive scenario”, which sees a growth in demand for high-energy products, such as air travel and meat. Emissions reductions are mainly achieved through BECCS.

(Pathways 1-3 see little-to-no overshoot of the 1.5C target, whereas P4 expects a high chance of overshoot.)

The chart below – which is taken from page 46 of chapter two (pdf) of the main report – shows the expected land-use change in 2050 and 2100 under each scenario. It is important to note that, on this chart, P1, P2, P3 and P4, correspond with “LED”, “S1”, “S2” and “S5”, respectively.

On the chart, expected land-use change for food crops (pink), energy crops (orange), forest (turquoise), “natural” land (blue) and pasture (green) are shown. Any number below zero indicates an overall decrease, while any number above shows expected increase.

 

Expected land-use change (million hectares) under four illustrative scenarios for limiting global warming to 1.5C above pre-industrial levels. Land-use change for food crops (pink), energy crops (orange), forest (turquoise), “natural” land (blue) and pasture (green) are shown. Source: IPCC

Expected land-use change (million hectares) under four illustrative scenarios for limiting global warming to 1.5C above pre-industrial levels. Land-use change for food crops (pink), energy crops (orange), forest (turquoise), “natural” land (blue) and pasture (green) are shown. Source: IPCC

The chart indicates how that, even in the scenario assuming the lowest possible reliance on negative emissions (P1/LED), land-use change is still expected to be substantial. Under P1/LED, it is assumed that 500m hectares of land – an area that is roughly twice the size of Argentina – is converted to forest by 2100. The pathway expects a similar-sized reduction in pastureland.

The P2/S1 pathway, which sees only limited use of BECCS, also expects large areas of land to be converted to forests, the report authors note on page 45:

“In pathways that allow for large-scale afforestation in addition to BECCS, land demand for afforestation can be larger than for BECCS. This follows from the assumption in the modelled pathways that, unlike bioenergy crops, forests are not harvested to allow unabated carbon storage on the same patch of land.”

However, in addition to the possible impacts of each of the NETs, the researchers also had to consider their overall level of “maturity” – or feasibility, Prof Jim Skea, co-chair of working group III (WG3) and chair of sustainable energy at Imperial College London, told a press briefing:

“Some of the nature-based techniques are definitely mature in the sense that we are doing them now and they are ready – it’s a question of the scale and the incentives that are needed for seeing them through.”

These “nature-based techniques”, which are also known as “natural climate solutions”, include afforestation, natural habitat regeneration and enhancing soil carbon stocks.

In comparison, BECCS should be considered less mature than nature-based methods, Skea says. This is because, although carbon capture and storage (CCS) has been demonstrated on a small scale at several sites across the world, it has not been shown to work alongside bioenergy at scale. “We’ve never really combined them together,” he says:

“Some of the other methods are lot more conceptual – for example, the enhanced weatheringof rock. Scientists believe it could be done. That’s what’s meant by the different levels of maturity. Some are ready to go now – they just need more incentives, others need a bit more development work.”

Could ‘solar geoengineering’ play a role in meeting 1.5C?

Solar geoengineering is only mentioned once in the SPM and 11 times in chapter four(pdf) of the report, where it is referred to as “solar radiation modification” (SRM).

SRM refers to a group of untested technologies that could, theoretically, reduce global warming by increasing the amount of sunlight that is reflected away from the Earth.

The report lists four of what it calls the “most-studied” options for SRM: stratospheric aerosol injection, marine cloud brightening, cirrus-cloud thinning and high-albedo crops and buildings. (More information on how these methods would work is detailed in Carbon Brief’s explainer on SRM.)

A lack of available scientific research led the authors to focus on just one of the proposed options, Prof Heleen de Coninck told the press briefing:

“The type of SRM we looked at was mainly stratospheric aerosol injection because that is what most of the literature is about. There’s been no experiments done so there’s no experimental evidence to assess – that’s why we’re saying it can only theoretically be effective in reducing the temperature.”

In accordance with the available scientific research, the report only considers “SRM as a supplement to deep mitigation, for example, in overshoot scenarios,” the authors say. The SPM reads:

“Although some SRM measures may be theoretically effective in reducing an overshoot, they face large uncertainties and knowledge gaps as well as substantial risks, institutional and social constraints to deployment related to governance, ethics, and impacts on sustainable development. They also do not mitigate ocean acidification.”

One ethical concern is a possible “moral hazard effect”, de Coninck says, which is the idea that research and development into solar geoengineering could deter policymakers from pursuing stringent mitigation.

Another risk mentioned in the report is “termination shock”. This is the fear that, if solar geoengineering was deployed and then suddenly stopped – as a result of political disagreement or a terrorist attack, for example – global temperatures could rapidly rebound.

This sharp temperature change could be “catastrophic” for wildlife, studies have suggested. However, other research argues that the likelihood of a termination shock has been “overplayed” and that measures could be put in place to ensure that the risk is minimised.

Many of the risks posed by SRM have not yet been adequately assessed by scientific research, de Coninck says:

“We’re not saying it’s not viable – that would be going beyond the IPCC’s mandate – but we’re noting that…it’s still a very developing field.”

What are the costs and benefits of meeting the 1.5C limit?

One obvious question about the 1.5C limit is whether it is worth meeting. In other words, do the benefits of avoided climate damages due to flooding, for example, outweigh the cumulative costs of cutting emissions?

Unfortunately, SR15 explicitly does not look at the total cost of 1.5C pathways. This is because the scientific literature on the subject is “limited”. Instead, the report looks at the global average “marginal abatement costs” this century. In other words, the costs per tonne of avoided emissions.

These marginal abatement costs are sometimes ambiguously referred to as the price of carbon used in IAM model pathways. This is not the same as a target or “required” carbon price in the real world, not least because IAMs often use a carbon price as a proxy for all other climate policy. Chapter two explains:

“A price on carbon can be imposed directly by carbon pricing or implicitly by regulatory policies. Other policy instruments, like technology policies or performance standards, can complement carbon pricing in specific areas.”

Nevertheless, the evidence suggests that carbon pricing should increase in order to meet more stringent climate goals, says chapter two.

In general, the SPM says that marginal abatement costs are roughly three to four times higher in 1.5C pathways, compared to 2C. It also sets out estimated investment needs for 1.5C pathways:

“Total annual average energy-related mitigation investment for the period 2015 to 2050 in pathways limiting warming to 1.5C is estimated to be around $900bn…Annual investment in low-carbon energy technologies and energy efficiency are upscaled by roughly a factor of five by 2050 compared to 2015.”

The SPM adds that “knowledge gaps” make it difficult to compare these mitigation costs against the benefits of avoided warming. For example, adaptation costs at 1.5C “might” be lower than for 2C, the SPM says, though it adds that costs are “difficult to quantify and compare”. Chapter two says:

“Pathways that are consistent with sustainable development show fewer mitigation and adaptation challenges and are associated with lower mitigation costs.”

Notably, however, while IAM pathways set out the costs of limiting warming to 1.5C, they do not generally consider the benefits of doing so, says the technical annex (pdf) to chapter two.

Meanwhile, these potential avoided climate damages from limiting warming to 1.5C are highly uncertain, as chapter three (pdf) of the report explains:

“Balancing of the costs and benefits of mitigation is challenging because estimating the value of climate change damages depends on multiple parameters whose appropriate values have been debated for decades (for example, the appropriate value of the discount rate) or that are very difficult to quantify (for example,the value of non-market impacts; the economic effects of losses in ecosystem services; and the potential for adaptation, which is dependent on the rate and timing of climate change and on the socioeconomic content).”

The best estimate of cumulative discounted damages due to 1.5C of warming by 2100 amounts to $54tn, the report says, rising to $69tn for 2C.

Will the world be able to adapt to 1.5C and beyond?

The report finds that, in general, the need for adaptation to climate change will be lower at 1.5C than 2C. However, it warns that, even if global warming is limited to 1.5C, it will not be possible to prepare for all of the impacts of climate change.

The report describes human adaptation to climate change as “the process of adjustment to actual or expected climate and its effects, in order to moderate harm or exploit beneficial opportunities”.

There are a number measures that could be taken to limit the impact of climate change on humans, the report says.

The table below – taken from pages 38-9 of chapter four (pdf) of the report – details eight “overarching” options for adaptation. The first column lists the conditions needed for the options to work and the second offers examples of where the options have already been implemented.

Eight “overarching” options for adapting for climate change. The first column lists the conditions needed for the options to work and second offers examples of where the options have already been implemented. Source: IPCC

Eight “overarching” options for adapting for climate change. The first column lists the conditions needed for the options to work and second offers examples of where the options have already been implemented. Source: IPCC

 

The first option, disaster risk management, is defined by the authors as “a process for designing, implementing and evaluating strategies, policies and measures to improve the understanding of disaster risk, and promoting improvement in disaster preparedness, response and recovery”.

As temperatures continue to rise, there is likely to be an “increased demand to integrate DRM and adaptation”, the authors write, “to reduce vulnerability, but institutional, technical and financial capacity challenges in frontline agencies constitute constraints”.

Another adaptation option discussed in the table is migration. The report notes that, at present, there is “low agreement as to whether migration is adaptive, in relation to cost effectiveness”. It says:

“Migrating can have mixed outcomes on reducing socio-economic vulnerability and its feasibility is constrained by low political and legal acceptability, and inadequate institutional capacity.”

In contrast to the report, migration is not listed as an adaptation option in the SPM.

The last adaptation option, “climate services”, refers to the possible dissemination of relevant climate information via daily forecasts and weather advisories, as well as seasonal forecasts and even multi-decadal projections. These kinds of services are already being used in sectors such as agriculture, health, disaster management, the report notes.

A number of steps could also be taken to reduce the risks facing natural ecosystems, the report says. These include restoring degraded natural spaces, strengthening actions to halt deforestation and pursuing sustainable agriculture and aquaculture.

The total costs associated with adapting to global warming of 1.5C are “difficult to quantify and compare with 2C,” says the SPM. This is largely to gaps in the scientific literature, the report authors say.

The SPM notes that adaptation has, typically, been funded by public sector sources, such as national governments, channels associated with the UN and through multilateral climate funds.

What are the links between 1.5C and poverty?

The final chapter of the report (chapter five, pdf) is dedicated to examining how climate change could impact sustainable development, poverty and inequality.

The SPM notes that, across the world, poorer communities are likely to be impacted disproportionately by global warming of 1.5C or higher.

“Populations at disproportionately higher risk of adverse consequences of global warming of 1.5C and beyond include disadvantaged and vulnerable populations, some indigenous peoples, and local communities dependent on agricultural or coastal livelihoods.”

A large proportion of the world’s poor rely on subsistence farming and so will be directly affected by the impact of climate change on temperature, rainfall and drought, says Prof Chuks Okereke, lead author of chapter five from the department of geography and environmental science at the University of Reading. He told a press briefing:

“A key finding of the report is these efforts to limit global warming to 1.5C can actually go hand in hand with many other intended to address issues of inequality and poverty eradication.”

In fact, limiting temperature rise to 1.5C rather than 2C could save “several hundred million” people from facing poverty by 2050, according to the report.

In addition, limiting global warming could also help the world to achieve many of the UN sustainable development goals (SDGs), the report says. The 17 SDGs are a set of targets, agreed in 2015, that aim to “end poverty, protect the planet and ensure that all people enjoy peace and prosperity” by 2030, according to the UN Development Programme.

It is worth noting, however, that, in some cases, actions to limit warming to 1.5C could come with trade-offs with the SDGs, the SPM notes:

“Mitigation options consistent with 1.5C pathways are associated with multiple synergies and trade-offs across the SDGs. While the total number of possible synergies exceeds the number of trade-offs, their net effect will depend on the pace and magnitude of changes, the composition of the mitigation portfolio and the management of the transition.”

The chart below summarises the potential positive (synergies) and negative (trade-offs) effects of mitigation options for reaching 1.5C on each of the SDGs. On the chart, the total length of the bars represent the size of the positive or negative effect, while shading shows the level of confidence (light to dark: low to very high).

The mitigation techniques are split into three sectors: energy supply, energy demand and land. Options assessed in the energy supply sector include biomass and renewables, nuclear, BECCS, and CCS with fossil fuels. The energy demand sector comprises options for improving energy efficiency in the transport and building sectors. The land sector comprises afforestation and reduced deforestation, sustainable agriculture, low-meat diets and a reduction in food waste, and soil carbon management.

You can read the Q&A in its entirety here.

What’s next?

In the short term, the report will be used immediately by the people who first requested it nearly three years ago in Paris – the world’s governments.

Climate negotiators from almost 200 countries are due to meet in Poland in December at the next annual round of talks. The IPCC report is certain to be cited and quoted by negotiators from a variety of countries as they, among other things, try to agree on the “rulebook” for the Paris Agreement.

The IPCC itself will now turn its attention to two more special reports before it publishes its sixth assessment report (pdf) in 2021. In September 2019, at a meeting in Kenya, it is due to finalise a special report on the “ocean and cryosphere in a changing climate”. At the same time, it will also finalise a special report on “climate change and land”.

In the UK, the government said earlier this year that, once the IPCC report is out, it will ask its official advisory body, the Committee on Climate Change, to assess the “implications” of revising the Climate Change Act 2008 to better reflect the Paris Agreement’s goals.

The Climate Change Act legally commits the UK to reduce its greenhouse gas emissions by “at least” 80% by 2050 against 1990 levels. Claire Perry, the minister for energy and clean growth, has said on a number of occasions since that announcement in April that governments need to “raise ambition to avert catastrophic climate change”.

As Carbon Brief explained at the time, the CCC has already said that a global 1.5C limit would mean a more ambitious 2050 goal for the UK, in the range of 86-96% below 1990 levels, as well as setting a net-zero target at some point.

Vertical gardens: Wellness oases in the urban jungle

When there’s only so much real estate available in urban centers for parks, how’s a developer to bring in more green with biophilic design?

By Kim Pexton
View the original article here.

Screen Shot 2018-09-20 at 9.45.21 AM

Experts in the emerging field of biophilic design are finding that that people need regular contact with nature to be happy and whole. For those who live and work in cities, the concrete, glass towers, smog, and noise can drastically and negatively affect wellbeing. Urban areas are projected to house 60 percent of people globally by 2030, and one in three people will live in cities with at least a half million inhabitants.

So here’s the question and our opportunity: When there’s only so much real estate available in urban centers for parks, how’s a developer to bring in more green with biophilic design?

BUILD UP. MARRY BUILDINGS AND NATURE WITH VERTICAL GARDENS

Building designers are responding to the biophilic design call to action by creating vertical gardens. Also called living walls or green walls, vertical gardens are self-contained gardens installed on the sides of buildings to provide expanses of greenery in urban areas. Vertical gardens can be attached to virtually any vertical structure, and they can be used as free-standing space dividers, providing beauty, sound-proofing, and security. Plants can also be used to reduce noise along roads and highways. Living green walls block high-frequency sounds while the supporting structure can help diminish low frequency noise.

HERE ARE A FEW OF OUR FAVORITE EXAMPLES:

Vertical Gardens2

Oasis Hotel, Singapore

Vertical-Gardens-3

Santalaia, a multifamily residential building in Bogota, Colombia.

VERTICAL GARDENS ARE GOOD FOR THE COMMUNITY’S HEALTH

Prospective tenants – be they multifamily or commercial – love vertical gardens, which makes them a win/win for developers and building users.

Vertical gardens provide refreshing visual breaks from concentrations of concrete and steel, and their benefits go far deeper. Vertical gardens have a profound impact on air quality, especially in mitigating humidity and controlling dust indoors and outdoors. Green walls absorb noise pollution and create micro-climates that build heat efficiency. They have the added benefit of creating urban ecosystems that attract insects and birds, positively affecting biodiversity. In some cases, vertical gardens contribute to a larger ecosystem. In fact, vertical gardens take on more of a regenerative design philosophy from a C02 design standpoint. Plants are natural filters – taking carbon dioxide from the air and replacing it with much needed oxygen. They also help to filter pollutants from the air, literally helping urban dwellers breathe easier.

According to Hanging Gardens, a New Zealand vertical garden designer, the Auckland Council estimated the social cost from air pollution in the city to be $1.07 billion. Further, studies show that in city streets bounded by buildings, careful placement of plants reduced concentrations of nitrogen dioxide by up to 40 percent and of microscopic particulate matter by up to 60 percent. These statistics can be powerfully persuasive during design review meetings and entitlements processes.

Then there are the psychological benefits. The cumulative body of evidence from more than a decade of research on the people-nature relationship proves that contact with vegetation is highly beneficial to human health and well being. Whether contact with vegetation is active (gardening) or passive (viewing vegetation through a window), results show a consistent pattern of positive effects including:

  • Psychological and physiological stress reduction
  • More positive moods
  • Increased ability to re-focus attention
  • Mental restoration and reduced mental fatigue
  • Improved performance on cognitive tasks
  • Reduced pain perceptions and faster recovery in healthcare settings

Vertical gardens bring operational benefits too. One of the biggest benefits of vertical gardens is their ability to manage water. Vertical gardens make the need for watering very efficient, as the process is managed using a drip irrigation or hydroponic system. Waste water is collected at the bottom of the garden and either drained away or reused.

While vertical gardens have undeniable benefits for developers and building users, they can be challenging to design and maintain if they are not planned and installed properly. It’s critical to bring together the right system, plants, design, and maintenance strategy so that the green wall can serve the project in the long-term. The planning and investment will be worth it.

This concept for the Mumbai Tower by Odell Architects takes the vertical garden a step further by incorporating a vertical farm.

This concept for the Mumbai Tower by Odell Architects takes the vertical garden a step further by incorporating a vertical farm.

U.S. utility solar contracts ‘exploded’ in 2018 despite tariffs: report

By Nichola Groom
View the original article here.

(Reuters) – Procurement of solar energy by U.S. utilities “exploded” in the first half of 2018, prompting a prominent research group to boost its five-year installation forecast on Thursday despite the Trump administration’s steep tariffs on imported panels.

An array of solar panels is seen in the desert near Victorville, California, U.S. March 28, 2018. REUTERS/Lucy Nicholson/File Photo

An array of solar panels is seen in the desert near Victorville, California, U.S. March 28, 2018. REUTERS/Lucy Nicholson/File Photo

A record 8.5 gigawatts (GW) of utility solar projects were procured in the first six months of this year after President Donald Trump in January announced a 30 percent tariff on panels produced overseas, according to the report by Wood Mackenzie Power & Renewables and industry trade group the Solar Energy Industries Association.

As a result, the research firm raised its utility-scale solar forecast for 2018 through 2023 by 1.9 GW. The forecast is still 8 percent lower than before the tariffs were announced. A gigawatt of solar energy can power about 164,000 homes.

FILE PHOTO: An array of solar panels is seen in the desert in Victorville, California March 13, 2015. REUTERS/Lucy Nicholson/File Photo

FILE PHOTO: An array of solar panels is seen in the desert in Victorville, California March 13, 2015. REUTERS/Lucy Nicholson/File Photo

Procurement soared in part because the 30 percent tariff was lower than many in the industry had feared, the report said. SEIA strongly lobbied against a tariff, saying it would drive up the cost of solar and hurt the industry’s robust job growth.

In addition, panel prices have fallen faster than expected because China pulled back its subsidies for the renewable power source in June, creating an oversupply of modules in the global market that has eroded the impact of the tariff.

Module prices averaged 42 cents a watt in the second quarter, the report said, 2 cents higher than the same period in 2017 but far below the 48 cents a watt they hit late last year as the industry fretted about a looming duty on imports.

In every segment of the market except residential, system pricing is at its lowest level ever, the report said. Utility projects make up more than half the solar market.

Utilities are eager to get projects going because of a federal solar tax credit that will begin phasing out in 2020. Next year will be the most impacted by the tariffs, Wood Mackenzie said. Developers will begin projects next year to claim the highest level of tax credit but delay buying modules until 2020 because the tariff drops by 5 percent each year.

In the first half of the year, the U.S. installed 4.7 GW of solar, accounting for nearly a third of new electricity generating capacity additions. In the second quarter, residential installations were roughly flat with last year at 577 MW, while commercial and industrial installations slid 8 percent to 453 MW.