energy storage

How Energy Storage Can Limit the Impact of Extreme Weather

John Jung, President & CEO, Greensmith Energy
View the original article here.

energy storage weather

Photo Credit: Howard Scott

Last month, the National Hurricane Center reported that Hurricane Maria, the sixth fastest hurricane on record, caused an estimated $90 billion in damage in Puerto Rico and the U.S. Virgin Islands. This would make it the third costliest hurricane in history, following Katrina and Harvey.

Now seven months later, there are still parts of Puerto Rico that are still without power. I can only imagine how this prolonged outage is making relief and recovery efforts difficult.

For those of us in the energy business, we see a better pathway for communities to avoid prolonged outages that hinder relief and recovery efforts.

One solution – already in the marketplace and in use around the world – is the combination of energy storage and islanded grid systems.

Islanded systems, also known as microgrids, can operate with or without a connection to grid. When you add energy storage, communities benefit from a more flexible, versatile distributed energy resource.

What exactly does that mean?

Traditional grid operators, without adequate energy storage, follow conservative limits on the deployment of distributed energy resources to maintain reliability.

Energy storage enables integration of more renewable energy sources so that grid systems can better respond to dynamic fluctuations in electricity consumption, and lessen greenhouse gas emissions. As solar, wind and hydro become the world’s main energy sources, renewables are no longer an incremental component in energy production.

And, renewable energy costs are the lowest ever. So, with islanding and storage combined, microgrids can safely lift limits on renewables, bringing a substantial benefit in places where electricity prices exceed the cost of electricity for renewables.

The Graciosa Hybrid Renewable Power Plant, located on the island of Graciosa in the northern part of the Azores, an autonomous region of Portugal, is a recent example of a Greensmith microgrid project that will combine solar and wind generation, together with energy storage using lithium-ion batteries. When completed, the Graciosa plant will enable 1 MW of solar and 4.5 MW of wind power to be supplied to the grid, reducing the region’s reliance on imported fossil fuels and significantly reducing GHG emissions.

Credit: Howard Scott

Credit: Howard Scott

Beyond the advanced energy storage technology Greensmith is known for, we help a growing number of power companies and developers integrate and maximize a diverse mix of grid resources using our industry-leading GEMS software platform. Our suite of proven grid-scale and microgrid energy storage solutions delivers renewables integration, reliability and resilience. In fact, more than one-third of all energy storage capacity installed in the United States is running on Greensmith’s GEMS software platform, which provides full visibility into a grid system operation and can pinpoint and isolate any malfunctions.

Faster response time means a greater chance of avoiding power outages. And, as we have seen in Puerto Rico, and the bomb cyclones that hit the northeast in March, extreme weather events were happening much more frequently across the country and the world.

The frequency of natural disasters is an important reason that more of us should look at energy storage and microgrids as a necessary infrastructure improvement for customers and utilities.

It’s clear that, while microgrids are complex systems, when deployed with energy storage solutions, they are essential to the evolution of our power grid.

EMERALD SKYLINE TO DEVELOP SOLAR FARM IN SOUTHERN ARIZONA WITH RESEARCH AND DEVELOPMENT FACILITY TO PURSUE ELECTRICAL STORAGE TECHNOLOGY.

“Solar generation and electricity storage technology are rapidly evolving sustainable energy alternatives. The combination of solar power generation and electricity storage is being utilized in projects around the world”

 May 1, 2018 from Emerald Skyline Corporation

BOCA RATON, FL, May 1, 2018 – FOR IMMEDIATE RELEASE

Today, Emerald Skyline announced that it will develop land located in southern Arizona for the purpose of solar generation and electricity storage technology research. The project, Emerald City Solar, recognizes that both solar generation and electricity storage technologies are rapidly evolving and will continue to become more cost effective. The southern Arizona project will include research and development facilities to continue to evaluate new technologies as they emerge. It is expected that the total generation of the solar farm will continue to increase along with the value per kilowatt hour of the electricity generated as new technologies are deployed. Emerald Skyline believes the future of renewable energy is in the storage technology and will be exploring novel ways of delivering and storing energy. They have assembled a world-class team to conduct research and development to drive innovation and advanced sustainable technologies to manage surplus renewable power for use on demand and supply of power.

SOLAR FARM

The site of the solar farm development enjoys the best solar profile in the United States and is near major urban centers including San Diego, Los Angeles, and Phoenix. The electricity generated could be sold to the local electric power utility company at prevailing Power Purchase Agreement rates of about .07 per kilowatt hour (KwH). However, through the use of proven electric storage technology, the value of the electricity could be significantly increased through the selling into the power grid during peak demand periods at much higher spot market prices. Selling power in this manner is called Regulation Services.

ELECTRICITY STORAGE

Deployment of electricity storage is increasing at explosive rates and has been described by the Edison Electric Institute (EEI) as a game changer in the industry. Several new companies can provide large battery-based storage units and have the operating systems required to interact with the electricity grid. Through storing electricity and injecting the stored power into the grid during peak demand periods the cost of peaking power can be greatly reduced. By selling power into the grid during peak demand at much higher prices the value of the solar power farm can be greatly enhanced.

“As a sustainability and resiliency consulting and LEED project management firm, this partnership enables us to collaborate with a host of industry partners to not only produce energy but also to test and demonstrate the benefits of solar energy storage technologies. When electricity storage is not available, excess solar electricity is wasted. When storage is installed, the excess energy can be saved and subsequently used to reduce the use of a fossil fuel,” reports Abraham Wien, LEED AP O+M, Director of Architecture & Environmental Design for Emerald Skyline.

To find out more information about Emerald City Solar or electricity generated from renewable sources such as solar and the current development in electrical energy storage technologies for a greener tomorrow, please contact Abraham Wien at [email protected] or call us 305.424.8704.