Companies including Royal Caribbean Group and ELIRE Group are working to make cruises more sustainable with innovations such as floating infrastructure
Cruise holidays offer a unique blend of relaxation, exploration and fine dining, all without leaving your floating hotel.
The Cruise Lines International Association forecasts an impressive 35.7 million global passengers in 2024 and the global cruise market is more than US$8bn.
Alongside its expansion, the cruise industry faces significant environmental challenges.
Cruise ships produce significant air pollution and have large carbon footprints, considerably surpassing those of flying or driving.
A medium-sized cruise ship can discharge upwards of 1 billion gallons of untreated sewage into the ocean, threatening delicate marine ecosystems like coral reefs with irreversible damage.
The industry is trying to pivot towards greener practices, facilitated by innovative collaborations and pioneering technology.
Jason Liberty, President and CEO at Royal Caribbean Group, says: “As a cruise company, we know we’re only as vibrant as both the destinations we visit and the oceans we sail. That’s why our strategies extend from our ships to our shoreside operations as well.
“From the tour operators we drive to pursue sustainability certifications to how we are intentionally diversifying our supplier base, with more local sourcing, we are focused on innovating across all aspects of our company, especially in our work to advance sustainability in the communities we visit.”
Amsterdam’s solution to cruising’s problems
In Amsterdam, the influx of 190 cruise ships per year brings a lot of tourists, but also poses serious environmental and residential challenges.
To combat this, the city has initiated plans to drastically reduce the number of cruise ships permitted to dock.
By 2026, the limit will be set at 100, with a complete ban on cruise docking in the city centre envisioned by 2035.
A new terminal, situated 16 miles away, will serve future cruise ships, which from 2027 must employ onshore power instead of traditional oil-fired generators.
Lubomila Jordanova, Founder and CEO of Plan A and Co-Founder of the Greentech Alliance, says: “Amsterdam’s proactive measures reflect a commitment to creating a more sustainable and liveable city by tackling the dual issues of overtourism and pollution head-on.”
How floating platforms could support sustainability
The concept of floating smart hubs presents a groundbreaking approach to enhancing cruise sustainability.
These floating infrastructures typically inflict minimal environmental harm compared to permanent port expansions, but current versions usually serve one purpose and are sunk after their useful life.
The floating infrastructure market, set to reach US$18.5bn by 2030, could serve various industries, improving operational sustainability across the board.
ELIRE Group’s hexagonal Smart Hubs can be assembled or dismantled as necessary and aim to support cruising to become more sustainable.
Luke Jenkinson, Founder & Group CEO at ELIRE Group, explains: “The innovative engineering behind our Smart Hubs, combined with the versatility of a unique multi-modal hexagon design, allows for endless configurations tailored to specific cases and locations.
“These range from large coastal wind farm assembly setups to smaller last-mile midstream river cargo configurations to reduce CO₂ emissions.
“We conducted a study in partnership with an independent decarbonisation consulting company MH Tech and discovered that a network of SmartHubs in ten small regions across the Mediterranean including Malta, a location known for its congested roads, could save the equivalent of 10 million tonnes of CO₂ over a 10 year period.
“In addition, it can take 30% of HGV vehicles off the roads by enabling logistics via electric waterborne transport.”
How Royal Caribbean Group is becoming more sustainable
Royal Caribbean Group has not only committed to stringent sustainability targets but is also pioneering extensive research and technologies to reduce environmental impact.
As of 2023, the company is more than halfway towards its 2025 carbon intensity reduction goals and has diverted 87% of its waste from landfills.
Nick Rose, Vice President, Head of ESG at Royal Caribbean, says: “I am proud of the continued effort Royal Caribbean Group has made to protect our beautiful oceans and find unique ways to reach our communities.”
Royal Caribbean Group has created the first at-sea waste-to-energy systems and started construction on its first methanol-capable ship.
The company is committed to net zero and has partnered with companies including Mærsk and the WWF to develop new technologies and solutions.
Brands are adopting a circular economy to promote sustainability and economic benefits, thus meeting consumer demand. Here, we pick out the top 10 of 2023
More brands have been embracing the concept of a circular economy over the past few years as a way of promoting sustainable development and reducing the impact of human activity on the environment.
A circular economy is an economic model that emphasises the efficient use and reuse of resources, products and materials in order to minimise waste and pollution. By prioritising circular economies, brands are able to capitalise on economic benefits, while also meeting the ever-rising demand for sustainable strategists from consumers.
That’s why, we’ve rounded up our top 10 brands embracing the circular economy in 2023.
Patagonia has been at the forefront of the circular economy movement since first making a sustainability commitment in 1986. The apparel brand aims to reduce its environmental impact through a number of different initiatives, including The Worn Wear programme, which encourages customers to repair, reuse, and recycle their garments. The programme offers a repair service that addresses any damages to the clothing, as well as a trade-in option where customers are provided with store credits for used Patagonia clothing. Through this initiative, Patagonia has successfully prolonged the lifespan of its products while also minimising waste.
The brand also introduced a line of clothing that incorporates recycled materials and uses organic cotton and other sustainable fibres. By adopting sustainable materials, Patagonia is making strides to reduce the environmental impact of its products and promote a circular economy.
Swedish home-retail conglomerate IKEA has made strides towards a circular economy and sustainability initiatives with three main commitments: The take-back programme, circular services and investing in sustainable materials.
Firstly, the Take-Back programme allows IKEA customers to return their furniture to be either repurposed or recycled, helping to promote a circular economy. The company also allows customers to rent items or buy refurbished furniture to promote the reuse of products and encourage customers to practise sustainable shopping habits. Finally, many products are made from FSC-certified wood and recycled plastic to reduce the company’s impact.
Unilever, a multinational consumer goods corporation, has prioritised sustainability and circular economy goals by undertaking various measures to advance its objectives. For example, all products use sustainable ingredients, such as ethically-sourced palm oil, to mitigate their environmental impact. The company has also pledged to reduce packaging waste by 2025 by 2025, while also establishing a recycling programme to increase education and enhance recycling rates.
Accenture is a company that utilises advanced technologies and partners with leading organisations like Mastercard, Amazon Web Services, Everledger, and Mercy Corps to advance its circular supply chain capability. The aim of this capability is to enhance financial inclusion, promote sustainable practices, and empower consumers. With this approach, Accenture ensures that its clients achieve their corporate sustainability goals through better resource planning and utilisation.
Fashion giant H&M has made a significant commitment to its ESG initiatives, such as reducing waste and promoting sustainable practices. One of these initiatives is its garment collection programme, which enables customers to return used clothing for recycling or repurposing. Additionally, H&M is dedicated to utilising sustainable materials like organic cotton and recycled polyester in its products, which has reduced the environmental impact of its products while promoting the circular economy.
Adidas is a prime example of how a big business can change and take responsibility for its role in the plastic problem and pledge to use its influence to make a positive impact. The sportswear giant launched the ‘Three Loop Strategy’ consisting of three interrelated initiatives. The first loop involves recycling plastic waste, the second involves designing shoes that can be remade and the third loop focuses on regeneration, where Adidas aims to use biodegradable materials that will disintegrate naturally into their surroundings.
Flooring company Interface has taken a strong stance towards sustainability and promoting a circular economy by initiating various measures to achieve its goal. One of their significant approaches is adopting a closed-loop manufacturing process, using recycled materials to make their carpet tiles. When tiles have reached the end of their life, they are collected and recycled into new products, reducing waste and fostering a circular economy.
HP has been incorporating circular practices into its operations for nearly two decades by collecting used ink cartridges. In recent years, the company has further intensified its recycling efforts, by launching the world’s first monitor and an entire PC made from ocean-bound plastics. The company’s overall goal is to become net-zero by 2040, with 100% renewable energy.
TrusTrace is on a mission to introduce transparency to both producers and consumers in the fashion industry, which accounts for 10% of humanity’s carbon emissions. With its cutting-edge digital platform, the company aims to raise awareness about individual responsibilities and promote best practices, having already attracted over 10,000 users. The company’s exceptional dedication to sustainability and circular economy has earned it the prestigious Solar Impulse label.
Mud Jean uses recycled denim to make new pairs of jeans, which customers can lease for just under €10 per month. This initiative allows customers to avoid buying jeans they will rarely wear, thus contributing to a closed-material loop. To participate in the Mud Jeans leasing programme, customers can send in an old pair of jeans and receive their first month of leasing for free. From there, customers can choose to continue their subscription and receive a new pair of Muds each month or end their subscription after the initial month.
Google will eliminate plastic from its consumer electronics packaging six months ahead of its self-imposed 2025 deadline. Google made its “plastic-free” pledge in October 2020.
The search giant will publish a 70-page guide in June so that other companies can see how it was done, said David Bourne, lead sustainability strategist for Google, during a session last week at Circularity 24, a GreenBiz event.
The company’s Pixel 8 smartphone, launched in October, was the first product under the new approach.
“You might think it’s sort of strange to enable other companies, potentially to enable other competitors,” Bourne said. “But our point of view on sustainability is that it really should be a collaborative endeavor. Innovation should be shared in sustainability, because if we sincerely want to create a sustainable future, then just a handful of companies being more sustainable isn’t going to achieve that.”
Google is encouraging those who use the guide to offer feedback.
Making sure design changes don’t frustrate consumers
The idea for the guide originated with the Google team working on the heaviest of its consumer products, TVs. They can weigh up to 40 pounds, said Katy Bolan, Google’s lead for environmental sustainability.
Google doesn’t make televisions, so it worked with manufacturing partners to deliver the goal, she said.
A major issue was ensuring that design changes weren’t frustrating for consumers, that they met Google’s aesthetic requirements and that they could be disposed of within existing recycling systems, said Miguel Arevalo, packaging innovation lead at Google. “It’s a bad experience if you have to think about it,” he said.
Google’s key design considerations
The new packaging is predominantly paper- and fiber-based, so it can be recycled easily. It required Google engineers, designers and suppliers to rethink lamination and coatings, box assembly, enclosures and labels, among other factors.
The company’s biggest challenges were:
Assessing how the elimination of plastic shrinkwrap would affect the durability and reliability of packages.
Determining whether size or shapes needed adjustments to accommodate “drop dynamics,” or what happens when an item is dropped.
Selecting new coatings and inks that met Google’s branding requirements: At least 50 solutions were reviewed. Suppliers that weren’t transparent about their impacts were eliminated quickly.
New ways to seal and waterproof the box, and to make sure it stays closed.
The reliability of closure labels and how easy they are to remove.
Weighing the future implications of substitutions, particularly for chemicals that could inadvertently result in higher greenhouse gas emissions.
One way to justify the extra cost
New paper-based packaging is likely to be more expensive than plastic, since they aren’t produced at the same scale. “When you first achieve something, it will be the most expensive version,” said Bourne.
That increase can be easier to support when considered as part of the total cost or if the expense is likely to decrease over time, the Google executives said. “We also see this as an investment,” Bourne said. “We are looking at sustainability as an augmentation of the consumer experience.”
Around the time the first American “chemistry” association was established 150 years ago, a new age was born.
The plastics age.
It was born in large part by chemists, driven by their desire to help solve society’s challenges. And in small part by a story about elephants.
Billiard Balls For much of human history, everyday tools and products were made mostly from ivory, wood, metals, plant fibers, animal skins/hair/bone, and the like.
A familiar example: billiard balls.
For hundreds of years, ivory was the favored material for making the smooth, durable spheres. But by the mid-1800s, relying on elephants to meet demand for ivory – about eight balls per tusk – became unsustainable and dangerous. Society demanded substitutes.
In the late 1860s, an American chemist patented the partially synthetic material “celluloid,” made primarily from plant cellulose and camphor, that began replacing ivory in multiple applications. Including billiard balls.
This story – new polymeric materials with advanced properties replacing limited, existing materials – has been evolving ever since, largely written by chemists and engineers.
Chemists Rising As the first and second industrial revolutions created a huge demand for materials, chemists searched for new sources – plus innovative, new materials. In addition to cellulose, galalith and rayon (a modified cellulose) were born in the late 1800s.
Then in the early 1900s, Belgian chemist Leo Baekeland created the first entirely synthetic plastic – and it would revolutionize the way many products were made
“Bakelite’s” properties were suited for a much wider variety of uses than its predecessors. For example, it was resistant to heat and did not conduct electricity, so it was a really good insulator, making it particularly useful in the automotive and electrical industries emerging in the early 1900s.
After that, chemists really got cooking.
Cellophane, invented in 1912, took off in the 1920s after DuPont made it water resistant.
Vinyl was developed in the 1920s to replace expensive, difficult-to-source rubber in multiple applications.
Polyethylene was produced during the 1930s in fits and starts in the UK (it’s now the most widely used plastic).
Polyvinyl chloride was discovered in 1933 by accident by a Dow Chemical lab worker.
Polyurethanes were invented in the 1930s by Dr. Otto Bayer (soon a household name).
Nylon was unveiled in 1939 at the New York World’s fair (and largely eclipsed silk in clothing.)
These “modern” materials inexorably made inroads in our society and economy. They solved challenges large and small, from creating a more affordable, reliable synthetic “rubber” to making women’s stockings more wearable.
By the 1930s the term “plastic” had become part of our everyday language.
“It’s a Wonderful Life” The classic Christmas movie, “It’s a Wonderful Life,” depicts a dramatic inflection point in America’s reliance on plastics: World War II.
Before the war, George Bailey’s friend Sam Wainwright offers him a “chance of a lifetime” investing in plastics. “This is the biggest thing since radio, and I’m letting you in on the ground floor.”
George turns him down and tells his future wife Mary: “Now you listen to me! I don’t want any plastics! I don’t want any ground floors, and I don’t want to get married – ever – to anyone! You understand that? I want to do what I want to do. And you’re… and you’re…” And then they kiss.
But I digress.
Sam “made a fortune in plastic hoods for planes” during the war. Plastics also were used to make the housing for radar equipment (since plastics don’t impede radar waves). Plastics replaced rubber in airplane wheels. And they even were sprayed on fighter planes to protect against corrosion from salty seawater.
The war required a massive run up in plastics production. Responding in emergency mode, America’s chemists and plastic makers proved invaluable to our nation’s war efforts. It soon became readily clear what these innovative materials could do.
Post War Boom(ers)
In the late 40s and 50s, these new materials began replacing traditional materials in everyday life, from car seats to refrigerators to food packaging.
Production boomed with the “Baby Boomers.” New plastics were invented – e.g., polyester, polypropylene, and polystyrene – that further cemented the role of plastics in our society and economy.
As the production of plastics rose, the Plastics Material Manufacturers Association in 1950 consolidated its efforts with the Manufacturing Chemists Association (today’s ACC). This kicked off a long and fruitful collaboration between plastic and chemical enterprises.
During the post-war decades, we discovered an interesting characteristic of these modern materials: Plastics allowed us to do more with less because they’re lightweight yet strong.
Later studies demonstrated what industry folks presumed at the time. In general, plastics reduce key environmental impacts of products and packaging compared to materials like glass, paper, and metals. By switching to plastics, we use less energy and create less waste and fewer carbon emissions than typical alternatives.
In short, the switch to plastics contributes immensely to sustainability, an often-overlooked characteristic. Perhaps somewhat unknowingly, chemists (and the companies they worked with) once again were at the forefront of contributing solutions to serious societal challenges.
Is This Sustainable?
As the last century was winding down, personal consumption was soaring. And Americans began to take greater notice of these new-ish materials that were displacing traditional glass, paper, and metals.
In 1987, a wayward barge full of trash travelled from New York to Belize looking for a home for its stinky cargo. The barge received extensive national media attention and stoked fears of a “garbage crisis.” The public began to blame the rapid growth of plastics, particularly packaging, for our garbage problem.
Consumption also was growing rapidly across much of the world before and after the turn of the century. But solid waste infrastructure was growing more slowly than needed in many places.
Increasing amounts of mismanaged refuse wound up in rivers and waterways and our ocean, where currents carried it across the globe. While most refuse sinks, many plastics are buoyant, making them more visible and concerning. As awareness grew of marine litter’s effects on wildlife and beaches, so too did concerns over the role of plastics in our global society.
In light of these and other events, many people began questioning the sustainability of plastics.
Over these decades, plastic makers and the entire value chain responded in part by encouraging growth in plastics recycling. Most communities successfully added plastic bottle/containers to their recycling programs, and plastic bottle recycling rates soon reached par with glass bottles.
And the widely admired “Plastics Make it Possible” campaign helped educate and remind Americans of the many solutions that plastics provide… solutions made possible by the very nature of these innovative, modern materials.
On the ACC front, at the turn of the century, plastic makers reorganized as ACC’s Plastics Division to improve organizational and advocacy efficiencies – and to ramp up solutions.
Making Sustainable Change
Today, most Americans appreciate the benefits of plastics… and they want to see more advances in sustainability. For example, Americans want to see increased recycling of all plastic packaging, especially the newer lightweight flexible packaging that’s replacing heavier materials. And they want an end to plastic waste in our environment.
So today, the Plastics Division is focused on “making sustainable change” by finding new ways to make plastics lighter, stronger, more efficient, and more recyclable. And by driving down greenhouse gas emissions from products and production.
We’re working to keep plastics in our economy and out of our environment. To achieve this, we’re focused on helping build a circular economy for plastics, in which plastics are reused instead of discarded.
We’re continuing to innovate, investing billions of dollars in next generation advanced recycling. Empowered by chemistry and engineering, these technologies make it possible for plastics to be remade into high-quality raw materials for new plastics. Again and again.
We’re advocating for a circular economy in statehouses and at the federal level with our 5 Actions for Sustainable Change. These policies are needed to help us reach our goal: by 2040, all U.S. plastic packaging will be recycled, reused, or recovered.
And we’re actively supporting a global agreement among nations to end plastic waste in our environment.
America’s Change Makers The story of plastics is evolving. It’s constantly being rewritten by our chemists, engineers, designers, and technicians. People we call America’s Change Makers who dedicate their careers to making sustainable change.
Today this story includes enabling renewable energy. Efficiently delivering safe water. Combatting climate change. Contributing to accessible, affordable medical treatments.
From helping save elephants a century and a half ago to driving down greenhouse gas emissions today, America’s Plastic Makers are leveraging our history of innovation to help solve some of society’s biggest challenges. And to create a cleaner, brighter future.
As we settle into fall, some U.S. employees are being summoned back to the office. Physical occupancy in office properties was at 25 percent as of Sept. 9, according to data collected by Kastle Systems in 10 large U.S. cities. Most people are continuing to work from home, however, many with no return date in mind. In fact, when a viable COVID-19 vaccine is finally rolled out, some might discover they have no office to return to, with companies rethinking whether they need a physical base at all. Facing this turn of events, property owners and managers are prioritizing energy efficiency as they grapple with fluctuating consumption levels.
“Managing occupied, partially occupied and unoccupied spaces with cooling, heating and lighting is essential,” said Barry Wood, LEED accredited professional & director of retail operations at JLL. “Many tenants will not fully reoccupy, and owners and managers must be able to adjust and adapt their energy usages to the needs of the building and tenant.”
According to Wood, improving energy efficiency is a differentiator in most buildings because utilities typically rank in the top five for expenses. “Also, because of COVID-19, many buildings are seeing that rental income and expense recoveries are down, and owners and managers must be creative in managing the balance of the property needs. Maintaining conveniences to the tenants and guests coming to the property is essential to ensure they are comfortable being there.”
Best practices depend on the facility, but Wood said they will certainly include varying the set points on chillers and rooftop equipment; ensuring the operation of chillers, cooling towers, air handlers and roof op equipment is within the highest efficiency zone; and working with tenants to cluster workers—within CDC suggested guidelines—for lighting and cooling efficiencies.
Additionally, properties should stagger schedules to take advantage of natural daylighting. Another item on the list is the revision of settings on occupancy sensors for lighting and cooling in walk-through traffic areas as well as individual offices that may have shorter stay times.
It will be a challenge to obtain the same capital improvement dollars as before. Wood said, “To be approved for this type of project at properties, many owners will focus this capital money on ‘must do’ or ‘re-tenanting’ projects rather than operating efficiencies, therefore the building operations and engineering team will be essential in finding savings through operating efficiencies.”
MONITORING ENERGY USAGE
Technology is bringing big advances in monitoring energy usage, but adoption has been sluggish. However, since COVID-19 has pushed up operating costs, having an efficient building has become sexy in the minds of owners. Energy consultants offering audits, such as Bright Power, have the receipts to prove that energy monitoring does save money and can reduce carbon emissions.
“When stay-at-home orders began, we saw our office and higher education clients’ building staff adjust equipment schedules to reflect the new reduced occupancy schedules,” said Samantha Pearce, director of energy management services at Bright Power. Clients that had action plans—or were able to easily prepare plans based on what equipment was essential for limited occupancy—are saving more.
According to Pearce, the best tip to offer is finding out how your equipment is operating, and how to adjust settings quickly and efficiently. “Remote monitoring and energy management services are an impactful way to mitigate the impact of COVID-19 on maintenance and operations plans.”
We had a client who needed to switch from heating to cooling at their building. We were able to walk them through the switch remotely since we had installed a remote monitoring system before the stay-at-home order. And, we were able to verify that the switch happened correctly, rather than have the property staff wait for resident complaints or before receiving increased utility bills,” she said.
Since the pandemic began, virologists have been preaching for bringing in as much outside air as possible. Doing this during mild weather can actually improve efficiency; for example, by utilizing the spring outdoor air to lower the temperature in a crowded auditorium instead of using a cooling tower. However, during extreme weather, increasing outdoor air can bring a drop in efficiency. In both cases, the outcomes depend greatly on the site’s mechanical equipment.
“It becomes extremely important to know how to capture those savings (during mild weather) in order to possibly counter the potential increased costs of increasing outdoor air supply during the extreme weather seasons,” Pearce said.
NEW OPERATIONAL GUIDANCE
Commercial buildings sitting vacant since March are significantly less energy efficient and more expensive to operate. According to Jeff Gerwig, LEED green associate & national engineering manager for Colliers International U.S., the reason is new operational guidance from the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) during the pandemic. ASHRAE’s new standards help create healthier indoor environments. However, energy efficiency measures implemented for years are now being reversed to achieve the recommendations.
“The primary impacts on energy efficiency and operating costs have been centered around three items,” explained Gerwig. “First, the increase of HVAC operating hours—ASHRAE recommends increasing building operating hours, if possible, up to 24/7. Also, outdoor air dampers are being opened to maximum percentages allowable to bring more outdoor air inside the property and create higher demand for HVAC operations.”
ASHRAE also recommends that dampers be opened up to 100 percent if possible, and Demand Control Ventilation (DCV) be disabled. “This technology worked in conjunction with outdoor air dampers. It measured indoor pollutant concentrations and used precise amounts of outdoor air to maintain spaces.” Gerwig added, “Given that ASHRAE recommends outdoor air percentages be increased to highest levels possible, these devices are being disabled.”
CREATING SAFE, HEALTHY ENVIRONMENTS
Employees are bound to continue reoccupying buildings in coming months, providing an excellent opportunity to consider both air quality and whether buildings are on track with long-term sustainability or efficiency goals.
“The types of air quality requirements we’re seeing put in place are very dependent on both the region/state and the type of building and can have a variety of implications on energy efficiency,” said Lou Maltezos, executive vice president of Ameresco, a company that specializes in renewable energy and energy efficiency consulting.
“As building owners have considered and experienced what ‘back to work’ looks like in communities around the world, we’re seeing a number of customers consider items such as touchless controls, updated HVAC systems and automated entry/exit systems to address both the efficiency needs of the building and the health and safety of the occupants,” Maltezos added.
For example, with the correct process and tenant instruction in place, owners can implement technologies such as ionization to their outside air units in return ducts that may reduce the amount of air needed to condition a space. Maltezos added that efficiency relies on utilizing data not only from the space, but the air handlers and controls system as well, for providing the correct amount of outside air.
RETHINKING PRIORITIES
In the current climate, it is essential to stay in touch with thought leadership on all matters related to energy. “Unfortunately, in most cases the energy savings reported (since COVID-19) for most buildings are not as significant as expected and not in line with occupancy reductions,” weighed in Thomas Vazakas, Cushman & Wakefield associate director of energy, infrastructure and sustainability for the EMEA region. “This is due to the inability in most buildings to have effective controls and zoning.”
For example, heating and cooling is provided to all open plan areas, whether occupied or not. Similarly, in many cases there are no occupancy sensors for lighting, therefore most, if not all, the lights will be on even though only a small area of the office needs it.
“As a result, we see most buildings using very similar energy to heating, cooling or lighting even though their occupancy is 50-90 percent less than it used to be,” explained Vazakas. “This is a great opportunity to install adequate controls in our buildings to ensure no energy is wasted.”
As the effects of the health crisis unfold, owners and managers continue testing in resilience. “Surely the loss of human lives is devastating, but at the same time COVID-19 presents an opportunity to rethink our priorities and change the way we live—and how we use our buildings. Many property owners are already looking into this and trying to use this crisis to help them develop and implement their sustainability goals and especially their corporate plans to meet Net Zero Carbon,” Vazakas concluded.
When this agenda also results in operational savings, it’s icing on the cake.
Last year saw numerous developments in the electric-vehicle space, from manufacturers like Tesla, Ford, and Porsche.
In addition to the developments, carmakers made claims about how fast they’ll be introducing new electric and hybrid vehicles over the next few years — partially in response to tightening efficiency and emissions standards.
Some manufacturers have revised their earlier estimates and are planning to reach electrification targets sooner than expected.
The electric-vehicle market made big gains in 2019, across multiple car manufacturers — and the industry has even bigger plans for the years to come.
Rivian, for example, closed out the year with an extra $1.3 billion in investments. Tesla turned a profit, debuted the Cybertruck, delivered the first Model 3s built in its Shanghai plant, and announced a boosted range on its Model S and Model X. On the luxury end of the spectrum, the Audi E-Tron went up for sale, Porsche started production on the Taycan performance car, and Lamborghini announced its first hybrid supercar.
While plenty of tangible EV-related developments happened in 2019, it was also a year of promises made. As of late last year, auto manufacturers had pledged to spend a total of $225 billion developing new EVs in the near future, via The Wall Street Journal.
Increasingly restrictive emissions and fuel-efficiency regulations around the globe — but not so much in the US — are compelling carmakers to roll out vehicles more able to fit within those restrictions. Accordingly, in recent years, manufacturers have advertised a whirlwind of plans and timelines for bringing more EVs to market.
Scroll down to read more about what automakers see in their EV future.
Toyota
Toyota — whose cars currently make up more than 80% of the global hybrid vehicle market, according to Reuters — announced plans to generate half of its sales from electrified vehicles by 2025, five years earlier than it previously estimated. Despite having its own battery-making operation already, Toyota will partner with Chinese battery manufacturers to meet demand.
Volkswagen Group
Last year, Volkswagen said it will spend more than $30 billion developing EVs by 2023. The manufacturer also aims for EVs to make up 40% of its global fleet by 2030. Not to mention, Volkswagen plans to reach its target of 1 million electric cars produced by the end of 2023, two years ahead of its prior predictions.
General Motors
In 2019, General Motors said Cadillac will be its lead brand when it comes to electric vehicles. Cadillac’s president said the majority of the brand’s models would be electric by 2030, and left open the possibility that the lineup would go entirely electric by then. He also confirmed that Cadillac would roll out a large Escalade-like electric SUV, which it expects to begin manufacturing in late 2023.
Ford
Last year, Ford unveiled the Mustang Mach-E, an electric crossover that gets its name from the company’s iconic sports car. But that wasn’t the only EV Ford had plans for. In 2018, Ford’s CEO said an increased investment in electric-car initiatives would result in a 2022 model lineup that includes 40 electric and electrified vehicles.
In 2019, Ford Europe said it will offer an electrified option for all of its future nameplates and announced at the Detroit Auto Show that a fully electric F-150 would launch in the coming years. The Blue Oval also showed off a lineup of 17 hybrids and EVs — both family haulers and commercial vehicles — it plans to bring to the European market by 2024.
Volvo
Last year, Volvo released its first electric vehicle, the XC40 Recharge, which it expects will go on sale in the US in the fourth quarter of 2020. The brand also doubled down on its pledge to generate 50% of its global sales from EVs by 2025 and promised that, by the same year, it will reduce the total carbon footprint of each vehicle manufactured by 40%.
Plus, Volvo said it will release a new EV every year for the next five years. This is all part of the Swedish company’s plan to become fully climate neutral by 2040.
Honda
Honda revealed its Honda E city car in 2019, and also said every model it sells in Europe will be at least partially electrified by 2022. That’s a big jump from Honda’s earlier projections of a full lineup of electrified cars by 2025. The fully electric Honda E and hybrid Jazz, known as the Fit to US consumers, will jumpstart the initiative.
BMW Group
In 2017, BMW Group projected that electrified vehicles — a term that doesn’t necessarily equate to fully electric vehicles — would account for 15% to 25% of its sales by 2025.
In working toward that projection, BMW Group unveiled the electric Mini Cooper SE last year, targeting it toward “urban mobility.” In June, the Bavarian brand said it will offer 25 electrified vehicles by 2023, two years earlier than it had initially planned. One of those new models — an electric version of the 1 Series hatchback — may arrive as early as 2021.
BMW also projects a twofold increase in electrified vehicle sales by 2021, as compared with 2019, and a 30% growth in those sales year over year through 2025.
Nissan
Nissan launched the Leaf Plus with a longer range last year, and plans to introduce eight new electric cars by 2022.
At last year’s Tokyo Motor Show, the brand unveiled the concept version of its new Ariya EV, and Car and Driver reported late last year that a production version could make it to the US by 2021. Nissan claims the high-performance crossover will travel 300 miles on a single charge and go from 0 to 60 mph in less than five seconds.
Fiat Chrysler Automobiles
In 2018, Fiat Chrysler announced it would invest $10.5 billion in electrification through 2022. By that year, FCA plans to offer at least 12 hybrid and all-electric powertrain options and launch more than 30 electrified nameplates. As part of that effort, the company announced a $4.5 billion investment in new and existing plants last year that would allow it to produce at least four plug-in hybrid Jeep models.
FCA began making good on that promise when it displayed plug-in hybrid versions of the Compass, Renegade, and Wrangler at the Consumer Electronics Show earlier this month.
Daimler
In 2017, Daimler, the parent company to Mercedes-Benz, unveiled plans to plunge more than $11 billion into developing its EQ series of electric cars, with the aim of introducing more than 10 EVs by 2022. The company also plans to offer at least one electric option in every Mercedes-Benz model series. Last year, Daimler confirmed that an all-electric G-Wagen is in the works.
In the past decade, the topic of “sustainability trends” has been a subject of great discussion. As we approach a new decade with our climate in crisis, it becomes more important than ever to keep up with and invest in the latest in sustainability efforts- particularly in the world of business. We asked over one hundred eco-minded business leaders what they saw as the sustainability trends that will shape the next decade. Here are the top ten trends they identified. From relying on renewable energy to eating smarter, we were excited to see that they were largely positive and optimistic!
1. CHANGES TO ENERGY PRODUCTION
One of the most talked about sustainability trends is reducing our dependence on fossil fuels. Fossil fuels are nonrenewable sources of energy and are the leading contributor to climate change. In the United States, they’re to blame for more than 80 percent of greenhouse gas emissions — and 98 percent of CO2 emissions alone.
As of 2017, fossil fuels accounted for 80 percent of the energy in the US. While this number seems depressing, this is the lowest share since 1902! Renewables now account for 11 percent, the highest share since the late 1910s.
This is a promising reminder of the fact that collective efforts to invest in and improve our energy infrastructure are having a meaningful impact, and many of you felt hopeful that solar and wind energy will become far more commonplace in the next decade.
Caio Bersot at EnergyRates.ca reminded us that not only are solar and wind energy technologically promising, the trends towards micro-generation of electricity in homes using these renewable energy technologies is also extremely promising. Whether wind turbine, solar panels or even geothermal energy, renewable energy tech is becoming increasingly affordable. This will probably enable people to invest in renewable energy sources without having to spend too much on installation costs.
2. REDUCTION IN OUR ENERGY CONSUMPTION
Another one of the most promising sustainability trends in business is reducing energy consumption. Electric vehicles (especially to fuel freight transportation), LED lighting, smart homes, and LEED certified buildings were all mentioned frequently as critical areas of forward progress because they change how we consume energy (and how MUCH electricity and fuel we consume).
Catherine Pears at Wavelength Lighting shared that in commercial spaces, the installation of LED lighting is less of a fleeting trend and more of a necessary shift required of any energy-efficient building. Legislation in cities like New York City and Berkley, California are already implementing requirements for lighting upgrades to commercial buildings above a certain size— because there is simply no need to be wasting so much energy by keeping traditional light sources (like CFL and incandescent) in place. Now that LEDs have caught up to traditional lighting in terms of price point, and actually pay themselves back in a short amount of time, the choice is pretty clear: choose LEDs and save energy and money.
Liz Jeneault of Faveable saw electric vehicles as the most promising trend. In the coming year and beyond, we absolutely will see people purchasing more plug-in hybrid and fully electric vehicles. Everyone is familiar with Tesla, but automakers across the board are offering or developing more eco-friendly options. Many of the vehicles are coming in the form of an SUV. The SUV segment continues to rise in popularity, as people want just the right of amount performance, comfort, and spaciousness. They don’t want the gas guzzlers of the past, however.
That’s why new vehicles like the Audi e-tron have been such a big hit. The SUV is fully electric, but offers excellent performance. I definitely feel having more zero-emissions vehicle options out there will help consumers make smarter choices for the environment. Reducing our personal carbon emissions is a great way to help address global warming. Since many of us drive so much, opting for a plug-in hybrid or fully electric vehicle can have a big impact.
Caio Bersot also highlighted trends towards a smart home. People buy personal assistants, motion sensors, smart lockers and bulbs, cleaning robots, and smart appliances all the time. The main reason is that such devices make your life more comfortable and practical. However, brands are starting to notice the importance of adding sustainability to the mix. Smart home gadgets will become each time more energy-efficient, be it by using less electricity or for actively preventing you from spending more energy than you should. This will include smart light bulb kits, smart power strips, smart thermostats, smart energy monitors and even smart curtains.
3. PLANT BASED EATING
The next in our series of sustainable trends attempts to mitigate the environmental impact of our diets. Many responses to this question were optimistic about recent trends towards plant-based eating and meat substitutes. It’s no secret that eating meat has a big impact on the planet. Within the United States, agriculture and forestry together accounted for 9.0 percent of U.S. greenhouse gas emissions in 2017 (not to mention the negative impact that agriculture has on soil and waterways). What does this have to do with meat? 26 percent of the earth’s land is actually used for livestock grazing and one-third of the planet’s arable land is occupied by crop production used entirely as livestock feed.
According to John Moss, of English Blinds, the rise of veganism is perhaps the main sustainability trend to watch over the next decade. Nestle, the world’s largest food conglomerate, states that “the plant-based food trend is here to stay,” and America’s top takeaway marketplace GrubHub states that demand for orders of plant-based food have reached an all-time high. In fact, GrubHub’s data indicates that orders of vegan food increased 19% in the first half of 2017 compared to the same period of 2016, and GlobalData identified a 5% rise in the number of data subjects identifying as vegan between 2014 and 2017.
The ability to eat vegan without spending huge amounts of time and money doing so has also increased exponentially in recent years, making this a much more viable option for people who might have previously ruled it out due to time or financial constraints, which is helping veganism as a whole to snowball.
Sylvain Rochon was particularly favorable towards simulated meat substitute products like the Impossible Burger and lab-grown meat.
The “meatless meat” market is growing very quickly because most people don’t care whether their burger or steak is made of actual meat or not. They like the taste and texture and how it feels. These companies like Impossible Foods figured out a way to put vegetables together to simulate color, texture and taste of meat. Since real meat is environmentally problematic and expensive to produce, most people, taste and texture being equal, would prefer to buy the less expensive alternative “veggy-meat” than the real thing.
Lab-grown meat, once ready for mass production and cost-effectiveness, can be an amazingly effective alternative to real meat, giving rise to designer meats. It is much easier to alter muscle cells in a lab environment for taste, texture, color and shape than to do that on a real live animal. So expect different varieties of muscle cell cultures to emerge as sources for future meats without the need to harvest any cells from animals anymore.
And, just like vertical farming in controlled environments, lab-grown meats can be produced within city borders, near distribution centers. This is all great for the consumer’s health, our wallets and the environment, and it is all made possible by the massive amount of investment made in artificial intelligence plus automation over the past few years.
4. REGENERATIVE AGRICULTURE
While many were focused on plant based eating trends, others felt that regenerative agriculture, to support both plants and livestock production, is the more important game changing wave of progress.
Lucinda Cramsey of Moink Box highlights,there are only 60 years left of top soil on this earth if we do not take a step toward regenerative farming. I was born a poor farmer in LaBelle, MO, where I still live today. I’ve seen how big ag. companies abused the family farm, and their land. Without our top soil, we have no food. Without food, we have nothing as humans.
Regenerative agriculture – defined as a system of farming principles and practices that increases biodiversity, enriches soils, improves watersheds, and enhances ecosystem services – is an antidote to our current depletion of topsoil.
Regenerative Agriculture aims to capture carbon in soil and aboveground biomass, meaning that it can feed the planet while simultaneously reversing current global trends of atmospheric accumulation.
Nonprofit Regeneration International claims that transitioning 10% to 20% of agricultural production to best practice regenerative systems could sequester enough carbon dioxide to reverse climate change. That seems like a bold claim, but many independent farmers have been astounded by the results they’ve seen. Take, for example, Gabe Brown who moved to regenerative practices on his ranch in Bismark, North Dakota. Organic matter and rainwater uptake tripled while he was able to handle five-times the number of cattle he used to.
With big brands like Patagonia, Dr. Bronners and Justin’s Nut Butters behind the regenerative agriculture movement, this trend certainly holds promise.
5. CHANGES TO OUR RELATIONSHIP WITH PLASTIC
Many felt that the tides were finally turning on our relationship with single use plastic, in large part driven by the growing awareness of ocean plastic pollution and its impact on ocean life, acidification and the food and water we consume.
Louis Watton of Shiply shared, I believe that cutting down on excess plastic packaging has been and will continue to be the biggest sustainability trend over the next decade, and will have a big impact on both businesses and consumers.
The packaging industry is the single largest producer of plastic. In 2015 there was roughly 146 million tonnes of plastic produced for packaging (over twice the amount that was produced for building and construction) and 141 million tonnes of that plastic is wasted – as such, targeting this industry is very important in the fight for sustainability.
As long as high profile programs such as Blue Planet 2 continue to bring attention to the undeniable negative impact such massive plastic production and waste has on our planet I believe consumers will be hyper-aware of the products they buy and how they are packaged.
John Moss of English Blinds echoed these sentiments. The consumer-led drive to cut down on the use of nonrecyclable plastics is already well underway and this is a trend that is only going to strengthen and snowball in the coming decade. We’re already in a position where a significant number of consumers across all demographic groups are willing to call out businesses of every caliber on the needless use of disposable plastics, and/or vote with their feet when it comes to leaving stores with poor plastic credentials without making a purchase.
Robert Piller of Eco Marketing Solutions reminded us that much damage has already been done. [Plastic reduction] will continue to trend, but will it help reverse ecological challenges? Well, that remains to be seen. The damage done so far is staggering, as between 4.8 and 12.7 million metric tons of plastic materials end up in oceans each year (National Center for Ecological Analysis and Synthesis), and 100,000 mammals and 1 million seabirds are killed each year by consuming plastics (The Ocean Conference). Fixing this problem would require every business and consumer to go green in a big and bold way.
6. CHANGES TO RECYCLING AND COMPOSTING
While strides have been made with composting and recycling in the US and worldwide, both have major challenges. Between the China Ban (and our even more problematic recycling practices before the China Ban) and composters struggling to accommodate (and now banning) materials like bioplastic that add no nutrients to their output, our system of sustainable waste management needs an overhaul.
Many responses were optimistic about technologies that can help us improve both recycling and composting in the future.
Jeff Kneal of The Critter Depot reminded us that our longstanding approach to composting (designed largely for yard waste) is not ideal going forward. One of the biggest trends is composting with black soldier fly larva. Black soldier fly larva are create a highly nutritious compost, that performs better than chemical fertilizers. Black soldier fly larva can also compost meat, fish, and other complex proteins, making them more efficient than worms. BSFL will consume and produce about twice their body weight per day, reducing landfill, and the need for large trash trucks. And, because of their protein, black soldier fly larva are also great food sources for reptiles and chickens.
These types of innovations can help us significantly improve industrial composting, and the output from industrial compost.
Most respondents recognized that recycling is essential to sustainability long-term. We will continue to produce goods out of metal, glass, plastic, paper and other materials – and when these items are at the end of their life, recycling them into new useful goods is optimal.
Improving single stream recycling involves three things:
(1) improved sorting technology, so Materials Recovery Facilities can better and more cleanly sort even more waste items into separate, usable materials. An example of an innovation here is that currently needed – MRFs cannot accept plastic bags because they are so flimsy and get caught in the gears of machinery. Investments are being made to better sort this material out at the front of th sorting line. If successful, plastic film (a material that is technically fairly easy to recycle) could start being accepted curbside nationwide!
(2) improving reclaiming and remanufacturing with recycled content, so manufacturers can readily and effectively use the materials. For example, printing on recycled plastic and paper can be challenging. Colors are less vibrant. Advancements that enable manufacturers to produce goods made with 100% post consumer waste that are still excellent for printing.
(3) developing end materials and products that can be made easily with this recycled content.
For example, as highlighted by Ronald D’souza of Angel Jackets, several brands have taken the initiative of producing sustainable t-shirts made out of plastic water bottles, including the significant brand Ralph Lauren. The most notable benefit of such trend is that it replaces harmful human-made polystyrene with waste plastic bottles that would otherwise be dumped in the ocean. “Approximately 18,834,000,000 are dumped in the landfills every year. While, each plastic bottle can take up to 700 years to perish. Although this method of recycling plastic is still in its developing phase, in the next decade, we will witness more products made of plastic bottles, including Jackets, pants, bags, hats, and most wearable and even customers would opt for such items. Recycling plastic, especially for creating something sustainable is undoubtedly a positive step that will help us reverse the looming ecological challenges the world is facing.
7. GOVERNMENT REGULATION AND POLICIES
The single issue that garnered pessimism about progress was the role that governments play in pushing true, long-term progress when it comes to sustainability.
Though globally, there are a lot of countries whose political leaders have made the planet a core priority, many lamented the fact that this is not true of the US’s current administration. Many did, however, recognize that 2020 is just around the corner and that a new wave of optimism could emerge with our next election – [I’m] not at all confident under the current US administration. I’m somewhat optimistic if we see a new administration elected in 2020. Others also highlighted the role that local and state politicians have played in the US to keep environmental progress going during this time.
8. CONSUMER AWARENESS AND YOUTH ADVOCATES
Even those who felt hopeless about politics voiced optimism of just how passionate the next generation of consumers and citizens is when it comes to climate change and marine plastic pollution.
There is hope of the impact this will have on companies and governments.
Dr. Nardia Haigh shared, Greta Thunberg’s Fridays for Climate movement is reinvigorating people who have worked on climate change for many years, activist investors, and other social movements in related areas. The breadth of industries affected will continue to grow. Climate change activism is no longer of concern just to energy companies, but it stands to affect all kinds of companies as these activists are consumers, students, investors, entrepreneurs, parents, and leaders. All this appears likely to make climate change a strategic issue for all companies, and therefore competition on the basis of one’s climate change credentials will continue to grow.
Sarah Hancock of Best Company shared a similar sentiment. In my opinion, the sustainability trend that will have the biggest impact on business and consumers in the next decade is the increased awareness, education, and action surrounding sustainability initiatives.
People are and will continue taking to social media and the streets to demand action from governments and businesses on environmental issues. Up-and-coming Gen Z’ers will continue to be important influencers in these movements. Expectations for companies to address issues such as climate change, deforestation, and waste will continue to grow. Consumers, especially younger ones, will increasingly shift their loyalties to companies they perceive to be acting on these issues.
As a result, I expect to see many businesses increasing their sustainability commitments through more responsible recycling practices, efforts to become more energy efficient, and donations to environmental causes. A growing number of organizations will likely take the next step and put in the necessary work to gain B Corporation status as well.
9. THE MOVE TO SLOW FASHION
Sheri Turnbow of Bespoke Southerly was one of the many respondents that highlighted the exciting trends towards sustainability in the fashion industry. Fashion is considered one of the largest industry polluters in the world.
Textile factories produce toxic wastewater, synthetic fibers get released into the ocean through washing, fast fashion has created a culture of disposable clothing where very little is recycled and most ends up in landfills — 92 million tons of solid waste dumped in landfills each year.
As a result of these issues, we are seeing trends, particularly among smaller entrepreneurial brands to implement systems to reduce waste at all stages of fashion production. Possibly the most prominent of these is the made to order model. Made to order means each garment is made when the customer orders it – so cut one at a time vs. creating vast amounts of inventory that may never be sold. This model also enables personalization and customizations of clothing that is increasingly popular with millennials.
Steven Li of The Rising echoed these sentiments. High fashion, including Burberry and Gucci can afford to source sustainable materials, but brands like H&M will have a hard time following suit. Consumers are more aware of their environmental footprint than ever before, and when it comes to fashion, consumer decisions will most certainly weigh in the sustainability of the brands they buy from. Fashion has long been an industry optimized for the end product. Supply chains often top emissions charts and it’s good to see brands are pivoting to be more sustainable.
In his legal commentary posted on April 1, 2019, my colleague, Rick Jones, a partner with Dechert LLP, a leading law firm serving the Commercial Real Estate Debt Market, opened with “I’m finally writing about climate change… not because 97 out of 100 scientists are shouting at us incessantly about the need to do something, but because I am dead certain that there are real and fairly immediate risks associated with the public reaction to the perception or awareness (take your pick) of the climate change risk which will drive regulatory intrusion on both the state and federal level, will drive legislation and moreover, will inform market reaction to lenders, investors, developers and their properties because of their climate change posture or profile.”
The esteemed Mr. Jones continues: “Where do we start? We are already seeing some commercial real estate owners begin to adapt to regulatory change. Look at the fantastic engineering marvel which is the Hudson Yards, built 40 feet above sea level, with its storm management system and its fortress-like power system designed to survive a mega storm. That’s expensive. It was clearly purpose driven. We should ask what made them, a bunch of smart folks, put up the money. I guarantee it wasn’t frivolous. I would suggest to you that it’s a sign of things to come. More generally, we are also seeing more solar, more green building technology and more innovations in engineering and in general more willingness to pay real money to address environmental concerns.”
New York has a wet climate, and water – from hurricanes, flooding, storm surges and even blizzards – is one of its primary environmental challenges throughout the year. Of course, buildings in NYC also endure seismic activity, high heat loads in the summer, power outages, manmade disasters like those produced by terrorist attacks as well as high humidity and year-round precipitation.
On the Pacific coast, seismic considerations are a primary concern as well as danger from wildfires, flash floods, and drought.
For most of my career serving the real estate industry, I have primarily conducted due diligence and providing underwriting and financial feasibility analyses for buyers, investors, lenders and capital market participants.
We usually start with a checklist of due diligence and underwriting items which typically includes:
reviewing historical operating statements and related reports,
abstracting leases and tenant correspondence records,
getting a title abstract, checking the flood zone,
obtaining and reviewing a property condition assessment (PSA) and a Phase 1 environmental site assessment (ESA), and
evaluating all legal and contractual arrangements that may affect the income and expenses of the property.
But, if you are like most real estate investors, you have missed one item which affects all properties and portfolios: the risk resulting from climate change and sea level rise as well as man-made hazards: You still do not know how sustainable and resilient the income and future value from your investment is.
Beginning about five years ago, my clients started to ask questions regarding the potential effect of climate change and sea level rise on the sustainability and resiliency of the property.
It is important to note that the risk to real property assets – which are immovable by their nature – exists regardless of whether you believe humans have caused climate change, or not.
In fact, my client chose to divest of assets in Miami in order to buy assets in locales without the risk of sea level rise and our screening process involved an informal, yet substantive, assessment of the risk from climate change – no matter the location of the property.
In an article entitled “What does resilience mean for commercial real estate” by Ryan M. Colker published in the September/October issue of BOMA Magazine, he opens with the following observation:
“Around the world, the frequency, intensity and impacts of natural disasters are increasing. These events can significantly affect the social, economic and environmental functionality of communities. The ability of commercial buildings and the businesses they house to adequately prepare for such events and quickly return to full operations—a quality known as resilience—contributes significantly to a community’s ability to bounce back. In addition to the community-wide impacts, the state of individual buildings also can affect the long-term viability of the businesses that occupy those buildings.”
For a multi-family, commercial or industrial building, we at Emerald Skyline define building resilience as “the ability of the systems and structure to protect, maintain or restore the value of, functionality of, and income generated by a property after a damaging event or calamity – whether it is from a weather event or a man-made circumstance – within a pre-determined acceptable timeframe.
A widely-cited 2005 study by the Multi-hazard Mitigation Council (MMC) of the National Institute of Building Sciences “documented how every $1 spent on mitigation saves society an average of $4.
In a 2018 interim update report by the MMC found that costs and benefits of designing all new construction to exceed select provisions in the 2015 IBC and the IRC and the implementation of the 2015 International Wildland-Urban Interface Code (IWUIC) resulted in a national similar benefit of saving $4 in future losses for every $1 spent on additional, up-front construction costs.
In a report published last month (April 2019) by the Urban Land Institute (ULI) and underwritten by Heitman LLC (Heitman) entitled “Climate Risk and Real Estate Decision-making,” the authors note that:
“In 2017, the year Hurricanes Harvey and Maria hit the United States and storms battered northern and central Europe, insurers paid out a record $135 billion globally for damage caused by storms and natural disasters. This figure does not represent actual damages, which in the United States alone equaled $307 billion, according to National Oceanic and Atmospheric Administration estimates.”
In the Foreword, Ed Walter, Global CEO, ULI, and Maury Tognarelli, CEO, Heitman, highlight the need to address sustainability and resiliency:
“Failure to address and mitigate climate risks may result in increased exposure to loss as a result of assets suffering from reduced liquidity and lower income, which will negatively affect investment returns. At the same time, investors who arm themselves with more accurate data on the impact of climate risks could help differentiate themselves and benefit from investing in locations at the forefront of climate mitigation.”
And the industry – especially among institutional investors – is taking note. “Many leading investment managers and institutional investors are undertaking flood, resilience, and climate vulnerability scans of their portfolios. These mapping exercises seek to identify the impacts of physical climate risks on their properties, including sea-level rise, flooding, heavy rainfall, water stress, extreme heat, wildfire, and hurricanes. Potential impacts being considered range from physical access and business disruption for tenants to the effects that longer-term temperature increases or increased wear and tear on buildings could have on operating and capital expenditure requirements. The ultimate objective for the investment community is to understand how climate will affect asset liquidity and, as a result, returns, in terms of both income and capital growth.”
The results of the survey conducted in preparation of this report, the researchers found that industry participants continue to rely on insurance companies to cover potential losses from physical damage due to a natural disaster – but they astutely point out that insurance “does not protect investors from devaluation or a reduction in asset liquidity.” They categorize the climate risks either physical or transitional risks as follows:
“Physical risks are those capable of directly affecting buildings; they include extreme weather events, gradual sea-level rise, and changing weather patterns.
“Transition risks are those that result from a shift to a lower-carbon economy and using new, non-fossil-fuel sources of energy. These include regulatory changes, economic shifts, and the changing availability and price of resources.
“The location-specific physical threats posed by factors such as sea-level rise, hurricanes, wildfires and forest fires, heat stress, and water stress are among the most easily observable risks to real estate investment. They are a particular concern since many key markets for real estate investment are in areas exposed to the physical impacts of climate change.
These risks and their potential impact on real estate is summarized in the following table.
So far, according to the ULI report, “…most investment managers and investors for directly held assets currently use insurance as their primary means of protection against extreme weather and climate events.” However, “leading companies in the industry … are modifying existing decision-making and management processes to add climate and extreme weather-related factors to those being considered alongside other risks and opportunities.
The National Infrastructure Advisory Council (NIAC) in a 2009 repot characterized resilience as having four key features known as the “4-Rs”:
Robustness: the ability to maintain critical operations and functions in the face of crisis.
Resourcefulness: the ability to skillfully prepare for, respond to and manage a crisis or disruption as it unfolds.
Rapid recovery: the ability to return to and/or reconstitute normal operations as quickly and efficiently as possible after a disruption.
Redundancy, back-up resources to support the originals in case of failure that should also be considered when planning for resilience
From the Whole Building Design Guide, a program of the National Institute of Building Sciences (NIBS), understanding the relationship between Asset (Building) resilience and the community’s resilience requires an understanding of the distinctions and relationships between risk, resilience and sustainability as follows:
Risk is expressed as the relationship between a particular hazard or threat that may degrade, or worse, devastate, the building’s security, operations and functionality and the consequences that result from this degradation of performance.
Resilience is the ability of a building or asset to recover from, or adjust, easily to misfortune or change. The ability to prepare and plan for, absorb, recover from, or more successfully adapt to actual or potential adverse effects as reflected in the aforementioned Four Rs.
Sustainability of an asset is determined by its ability to meet the needs of the present while being able to maintain its functionality over time without not being harmful to the environment or depleting natural resources.
The following diagram created by Mohammed Ettouney and Sreenivas Alampalli in their books on Infrastructure Health in Civil Engineering, presented the relationship of threat, vulnerability and consequences to risk as follows:
The physical review of the property is conducted in conjunction with the Phase I environmental site assessment and the property condition assessment and includes a review of the property’s resiliency features like hardened walls, raised electronic and network connections, secondary systems.
No building operates in a vacuum: Its resiliency, in particular, is directly connected to its location and is directly affected by the surrounding neighborhood, the community, and natural and man-made risks (hazards).
Based on a property-specific assessment including use of mapping services, our team of professionals evaluate a building’s resiliency and sustainability resulting in a rating from 1, not resilient or sustainable (High Risk) to a 5 (Highly Resilient). Our objective is to provide investors with the information they need to make prudent investment decisions that account for the physical, environmental and social risks to the cash flow stream and market value of the building.
At the conclusion of our procedures, we identify land and building improvements that would enhance a property’s resiliency and sustainability. The economics of each improvement or enhancement is assessed in a cost-benefit analysis.
We then evaluate the tradeoffs between performance of a building over its life-cycle and the cost of improving the building systems to ensure its sustainability and resiliency. Accordingly, we evaluate the total cost of ownership (TCO) by determining the capital cost of the property including any improvements plus the present value of the future expenses of operations, maintenance, utilities and the estimated cost to recover from a calamity.
“Solar generation and electricity storage technology are rapidly evolving sustainable energy alternatives. The combination of solar power generation and electricity storage is being utilized in projects around the world”
BOCA RATON, FL, May 1, 2018 – FOR IMMEDIATE RELEASE
Today, Emerald Skyline announced that it will develop land located in southern Arizona for the purpose of solar generation and electricity storage technology research. The project, Emerald City Solar, recognizes that both solar generation and electricity storage technologies are rapidly evolving and will continue to become more cost effective. The southern Arizona project will include research and development facilities to continue to evaluate new technologies as they emerge. It is expected that the total generation of the solar farm will continue to increase along with the value per kilowatt hour of the electricity generated as new technologies are deployed. Emerald Skyline believes the future of renewable energy is in the storage technology and will be exploring novel ways of delivering and storing energy. They have assembled a world-class team to conduct research and development to drive innovation and advanced sustainable technologies to manage surplus renewable power for use on demand and supply of power.
SOLAR FARM
The site of the solar farm development enjoys the best solar profile in the United States and is near major urban centers including San Diego, Los Angeles, and Phoenix. The electricity generated could be sold to the local electric power utility company at prevailing Power Purchase Agreement rates of about .07 per kilowatt hour (KwH). However, through the use of proven electric storage technology, the value of the electricity could be significantly increased through the selling into the power grid during peak demand periods at much higher spot market prices. Selling power in this manner is called Regulation Services.
ELECTRICITY STORAGE
Deployment of electricity storage is increasing at explosive rates and has been described by the Edison Electric Institute (EEI) as a game changer in the industry. Several new companies can provide large battery-based storage units and have the operating systems required to interact with the electricity grid. Through storing electricity and injecting the stored power into the grid during peak demand periods the cost of peaking power can be greatly reduced. By selling power into the grid during peak demand at much higher prices the value of the solar power farm can be greatly enhanced.
“As a sustainability and resiliency consulting and LEED project management firm, this partnership enables us to collaborate with a host of industry partners to not only produce energy but also to test and demonstrate the benefits of solar energy storage technologies. When electricity storage is not available, excess solar electricity is wasted. When storage is installed, the excess energy can be saved and subsequently used to reduce the use of a fossil fuel,” reports Abraham Wien, LEED AP O+M, Director of Architecture & Environmental Design for Emerald Skyline.
To find out more information about Emerald City Solar or electricity generated from renewable sources such as solar and the current development in electrical energy storage technologies for a greener tomorrow, please contact Abraham Wien at [email protected] or call us 305.424.8704.
Astrid Stawiarz Getty Images for UN Global Compact
Evidence is mounting to show that the frequency and ferocity of extreme weather events is intensifying on a global scale. From severe droughts to powerful storms, we are living in an increasingly changeable, uncertain, and unpredictable world.
You don’t have to believe in climate change to accept this new reality. Resilience and the ability to manage challenges impacting us and our environment are of far greater importance to both business and society. Take the recent destructive hurricanes in the U.S. and the Caribbean, or the devastating floods in Nepal, India, and Bangladesh that represent a stark example of this new reality and of our growing vulnerability.
The role of business within this new reality is changing. Businesses have a critical role to play in helping solve the challenges we face through providing services and solutions that support society. In fact, businesses that do not adapt their models run the risk of eroding trust and ultimately, forfeiting customer loyalty.
Uncertainty in the world—from extreme events, to declining natural resources, to the changing skills required for employment—gives forward-thinking C-suite leaders an opportunity to adopt conscious capitalism through the incorporation of key elements like trust, collaboration, and stakeholder orientation into day-to-day business practices. And, as consumers increasingly demand that their brands reflect these objectives, companies that want to remain competitive will need to adapt by joining the circular economy.
At its most basic, the circular economy replaces the current wasteful linear economic model. Instead of organizations relying on finite resources, they conduct sustainable business. They find renewable resources. They remove waste at every stage, from sourcing to recycling—creating a business model that restores and regenerates, rather than depletes and throws away. They look at how products are made, who makes them, and where, as well as how those same products are recycled or sustainably retired. In fact, adopting a circular economy model is not simply about products and services but also the way we do business as companies. It presents an opportunity to move beyond simply meeting sustainability standards to a solution that transforms the current model of business and one that can create a competitive advantage for the leaders.
Leading companies are still innovating, but now in a way that takes responsibility for their effect on people, the environment, and the state of our world. And they have realized that—contrary to popular belief—doing so can still be profitable. Accenture research shows a potential $4.5 trillion reward for achieving sustainable businesses by 2030. And a number of companies are already making progress toward this aim.
Rubicon Global, for instance, a pioneering U.S.-based waste management company that connects customers directly with independent waste haulers, is disrupting the current waste disposal model to reduce waste to landfill, while passing on $1 million in savings to its clients across 80,000 locations.
Nike, another leading example, is rapidly transitioning toward its closed-loop vision with a bold target for FY2020: zero waste from contract footwear manufacturing going to landfill or incineration without energy recovery. To date, 70% of all Nike (NKE, -0.43%) footwear and apparel incorporates recycled materials, using 29 high-performance, closed-loop materials made from factory scraps.
As the circular economy and conscious capitalism take hold, the C-suite is taking note: 64% of UN Global Compact CEOs say sustainability issues play a central role in their strategic planning and business development, while 59% of CEOs report that their company can accurately quantify the business value created through their sustainability initiatives, up from 38% in 2013.
The circular economy, a critical aspect of this change, is already happening—so much so that the World Economic Forum Young Global Leaders, in collaboration with Accenture Strategy and in partnership with Fortune, recognize leaders through The Circulars, the world’s leading circular economy award program. The Circulars, presented each year at the World Economic Forum Annual Meeting in Davos, attracts entries from individuals and organizations across business and civil society, from global giants such as Unilever to innovative startups such as Method. A winner at The Circulars in 2015, Method was built on wholly circular and sustainable principles, ensuring 75% of its products are cradle-to-cradle certified, meaning they are designed and produced in a socially and environmentally responsible way. Method has eliminated countless toxic chemicals from homes by using natural inputs.
These are just a few examples of organizations driving value through circular economy innovation—there are many more. In a world in which conscious capitalism is becoming mainstream, the circular economy has a significant role to play in enabling businesses to make the transition whilst continuing to deliver value to customers, shareholders, and society. As more businesses take the lead, the opportunity that the circular economy represents will become a reality.