Financial Benefits

How Office Owners are Achieving Net Zero Goals

Both tenants and investors are increasingly focusing on office building’s carbon footprints when considering new deals.

By: Patricia Kirk
View the original article here

As the push to become carbon neutral accelerates globally, there is increasing pressure on office building owners to implement changes to accommodate those goals, including by making their buildings more energy efficient, using sustainable building materials, reducing waste and improving water systems. Some 105 big companies, including Amazon, Microsoft, Unilever, and BlackRock among others, have pledged to be carbon neutral by 2040, with additional firms promising to reduce carbon emissions by 2030. More than 100 countries, including the U.S., have pledged to become carbon neutral by 2050.

“A future where businesses are taxed on their carbon emissions could be close at hand,” said Drew Shula, founder and CEO of The Verdical Group, a Los Angeles-based green-building consulting firm.

California has already passed legislation requiring new and significantly renovated commercial buildings to be carbon neutral by 2030. Additionally, New York City’s Climate Mobilization Act (CMA) includes Local Law 97, which impacts all buildings over 25,000 sq. ft. and calculates carbon intensity for buildings on a per square foot basis, assigning limits to intensity beginning in 2024. Buildings that exceed that limit will be fined $268 per ton of carbon, notes Meadow Hackett, manager for sustainability and KPI services at consulting firm Deloitte.

She notes that many office REITs are planning carbon neutrality strategies to avoid penalties at their New York City properties, and companies are making capital allocation decisions around energy efficiency based on penalty avoidance.

Green building experts acknowledge that a net zero mandate would present a challenge for office building owners/investors, but note that it may not be as daunting as they might perceive.

“Any existing building’s carbon emissions can be reduced, and the first step is to understand its current level of performance,” says Elizabeth Beardsley, senior policy counsel for the U.S. Green Building Council (USGBC). She adds that this requires metering and reviewing utility bills and any other available building performance data that can help identify areas in need of increased operational efficiency and performance.

Once this assessment is completed, existing building owners and operators should develop a strategic action plan aimed at reducing annual building greenhouse gas emissions, Beardsley says. “The action plan can help owners to develop an ‘optimal path’ forward via the evaluation of alternative scenarios to assess opportunities for system upgrades, efficiency improvements, renewable energy generation and/or procurement, and calculate associated costs for each scenario.”

According to Rielle Green, manager of energy & sustainability with CBRE Property Management, which manages 2.7 billion sq. ft. of commercial real estate globally, there is no one-size-fits-all solution for getting to net zero. “Every property is uniquely built with different operating systems and located in different areas with different climates.”

CBRE property managers work with clients to determine which solutions make sense, which may include installing solar panels to reduce carbon dioxide emissions and energy consumption, smart building technology to monitor energy usage, LED lighting or green roofs.

Beardsley adds that owners could lower a building’s carbon footprint by encouraging tenants to commute by walking, biking, public transport, ride-sharing and carpools. This might involve providing a shared bicycle system or membership in a micro-mobility fleet; contributions for public transportation passes; car-sharing memberships; and on-site electric vehicle (EV) charging stations.

Beardsley also notes that conservation and recycling are other important elements for reducing a building’s carbon footprint. “Reducing a building’s water consumption reduces associated energy loads for water provision and wastewater management, as potable water treatment, distribution and use are highly energy-intensive,” she says. 

She offers case studies to illustrate how existing buildings achieved LEED Zero certifications.

The Los Angeles Department of Water & Power, for example, began reducing the footprint of its 17-story, 55-year-old, all-electric John Ferro Building in 2013 with a suite of energy efficiency measures, including lighting retrofits, chiller and fan system upgrades that earned the building’s initial LEED certification in 2015. The following year, the building, which houses LADWP’s 11,000 employees, recertified LEED Gold and in September 2019, it became the first building in California to achieve LEED Net Zero Energy.

Another example is the historic headquarters of Entegrity Partners, a sustainability and energy services company specializing in the implementation of energy conservation and renewable energy projects, which became the first LEED Zero-certified project in the U.S. in 2019 and the second in the world. The building, which achieved LEED Platinum for New Construction, was also awarded Zero Energy certification by the International Living Future Institute.

Entegrity began devising a plan to retrofit its 13,342-sq. ft. Darragh Building to net zero energy in 2016. Initial strategies employed included all-LED lighting, dynamic self-tinting glass, operable windows and doors for natural ventilation in the summertime, and occupancy sensors. The renovation also used locally-sourced materials when possible; preserved daylighting; and installed lighting controls, high-efficiency plumbing fixtures, and native landscaping.

Office buildings with high performing environmental improvements also command a rent premium, according to Beardsley, and trade at higher values than traditional buildings because they offer savings in operational costs. She cites research that indicates tenant were willing to pay $0.75 per sq. ft. for space in a LEED-certified office building compared to a non-LEED certified one.

Additionally, the U.S General Services Administration (GSA) released a 2018 study on the impact of high-performance buildings that quantified their benefits compared to their legacy building counterparts in the GSA’s portfolio. The study found that the upgraded buildings delivered greater cost savings and tenant satisfaction were deemed, therefore, a less risky investment than traditional buildings.

Shula suggests that Blackrock, the world’s largest asset manager, is a great example of this preference for more environmentally sustainable building. The firm committed to net zero for its own operations and is making being carbon neutral the central focus for its more than $8 trillion in assets under management.

Hackett, notes that sustainable swaps and building retrofits are already common in existing buildings to meet carbon neutrality goals. Landlords are deploying more efficient technology, such as occupancy light sensors, LED lighting, and power management software to control HVAC systems.

“Investors are more in tune with how their buildings are performing when it comes to sustainability and ESG today than a decade ago,” adds Green. She notes that sustainability has definitely become a selling point because potential tenants want to know how their buildings are performing in comparison to other buildings in the market.

Meanwhile, “[Institutional] investors are placing ESG, and climate change in particular, central to their investment strategies.”

Hackett notes, for example, that members of Net Zero Asset Owner Alliance, which represent roughly $5 trillion in assets under management, have pledged to transition their investment portfolios to net zero emissions by 2050.

The cost for upgrading existing buildings to achieve net zero depends on many factors, but the building’s age and relative inefficiency are key determinants, Beardsley says. She also notes that the building’s size, shape, and location may limit its capacity to generate on-site renewable energy.

However, “You don’t need to get to zero carbon all at once,” says Shula. “Create a plan to achieve carbon neutrality by 2030, then work backward to today to determine what steps to take first.”

For example, as building equipment reaches end-of-life, it should be replaced with more efficient, all-electric equipment and appliances to enable the reduction of the carbon footprint, he notes.

Getting ground-up buildings to net zero, on the other hand, adds a cost premium of zero to 1 percent when designed and developed as a high-performance building from the start, according to a 2019 USGBC report, The study also noted that operational savings recoup any incremental costs for getting to net zero in a relatively short time, with return on investment for both existing and new office buildings beginning in as little as a year.

Emma Hughes, a LEED project manager with USGBC, notes that with today’s tools, technology and knowledge all new buildings can be designed and constructed to highly efficient standards and achieve net zero energy during the construction process via integration of renewable energy generation and/or procurement.

Calculating the Costs of Moving to Net Zero

Cutting greenhouse gas emissions will affect real estate investors. The question is how much?

By: Beth Mattson-Teig
View the original article here

In August, the Intergovernmental Panel on Climate Change issued a harrowing report that concluded that nations had waited too long to curb fossil fuel emissions and there is no longer a way to stop global warming from intensifying over the next 20 years.

That has put renewed pressure on countries to cut emissions to avoid an even worse trajectory. In the U.S., many cities and states are enacting net zero legislation with Boston becoming the latest city to pass an ordinance that sets emissions performance standards on existing buildings with the goal of decarbonizing the city’s large building stock by 2050.

That will mean upfront costs to increase energy efficiency and reduce emissions even as the toll of unchecked climate change is already having massive financial impacts in the form of disasters that are increasing in frequency and intensity. As of early October, the U.S. had experienced 18 different weather/climate disaster events that exceeded $1 billion in damages, according to the National Centers for Environmental Information. The cumulative costs for these events is north of $100 billion on the year, putting 2021 on pace to the third most expensive year since 1980.

What’s less clear is who will bear the brunt of the costs associated with the implementation of net zero strategies and how this will affect real estate investors’ returns. That’s what Green Street set out to answer with a recent report assessing the potential costs of net zero across 17 property sectors. It’s a particularly relevant question given that the operation and construction of buildings account for an estimated 40 percent of global greenhouse gas (GHG) emissions, according to the report.

In August, the Intergovernmental Panel on Climate Change issued a harrowing report that concluded that nations had waited too long to curb fossil fuel emissions and there is no longer a way to stop global warming from intensifying over the next 20 years.

That has put renewed pressure on countries to cut emissions to avoid an even worse trajectory. In the U.S., many cities and states are enacting net zero legislation with Boston becoming the latest city to pass an ordinance that sets emissions performance standards on existing buildings with the goal of decarbonizing the city’s large building stock by 2050.

That will mean upfront costs to increase energy efficiency and reduce emissions even as the toll of unchecked climate change is already having massive financial impacts in the form of disasters that are increasing in frequency and intensity. As of early October, the U.S. had experienced 18 different weather/climate disaster events that exceeded $1 billion in damages, according to the National Centers for Environmental Information. The cumulative costs for these events is north of $100 billion on the year, putting 2021 on pace to the third most expensive year since 1980.

What’s less clear is who will bear the brunt of the costs associated with the implementation of net zero strategies and how this will affect real estate investors’ returns. That’s what Green Street set out to answer with a recent report assessing the potential costs of net zero across 17 property sectors. It’s a particularly relevant question given that the operation and construction of buildings account for an estimated 40 percent of global greenhouse gas (GHG) emissions, according to the report.

“That’s why we looked at it more as a cost, because we think this is something that building owners will do more reactively to the pressure that they are feeling or the pressure that they expect to feel,” notes Dave Bragg, co-head of Strategic Research at Green Street.

The Green Street analysis starts with a tally of total greenhouse gas (GHG) emissions per square foot for a portfolio of REIT-quality operating real estate assets. Total emissions per square foot data is translated into a hypothetical total potential cost by multiplying a landlord’s owned square footage by an assumed carbon price. The data set is amalgamated from REIT and tenant disclosure, landlord surveys and meetings with ESG experts.

There are three main buckets for classifying emissions.

According to the report, “Scope 1 emissions are released into the atmosphere as a direct result of activities occurring in the building, like natural gas combusted in the boiler. Scope 2 emissions are reported for electricity, heat, steam, or cooling generated elsewhere but consumed at the properties and paid for by the landlord. REIT reporting on scope 1 and 2 is rather clear and consistent.”

One of the key takeaways from the analysis is that the movement towards net zero appears likely to result in a drag on property prices, property owners will have to invest in things such as more energy efficient systems, on-site solar and the purchase of green power purchase agreements. Ultimately, those costs will be offset, at least partly, by higher rents and/or lower operating expenses. However, there is still the cap-ex spending to consider. “The way that we think about it is that this will be a net cost and a net drag on property pricing,” says Bragg. “So, there is going to be an impact here that needs to be assessed by real estate investors and something that deserves implementing in an underwriting framework.”

 second notable finding is that the impact will be unevenly distributed across property types with some sectors better positioned than others. Those property sectors that are expected to experience a “big” impact of a 5 percent or greater reduction to warranted value are data centers, lodging and cold storage. Those likely to see a “moderate” hit of 2 percent to 5 percent are office, retail and industrial. Sectors with low levels of emissions that should feel a negligible impact to value of 0 to 2 percent are multifamily, student housing, storage, labs and gaming.

“The impact on warranted values equates to about one-third of the hypothetical total potential cost of emissions, which makes sense when considering that the cost will be borne in part by landlords and over a long period of time,” according to the report.

Is there a business case for net zero?

While much of the push for net zero is coming from external forces, real estate owners and operators are assessing the business case for adopting these strategies. Are they only a net cost or are their ways moving to net zero can improve the bottom line? Potential economic incentives include higher rents, reduced costs stemming from energy efficiency and after-tax savings or accelerated depreciation.

Marta Schantz, senior vice president of the Greenprint Center for Building Performance at the Urban Land Institute, argues that this is the case.

“What we’re seeing is that there is growing momentum for real estate owners and developers to work towards net zero, first and foremost because there is a financial business case,” Schantz says.

When operators reduce energy consumption and improve energy efficiency it translates to lower costs, higher net operating income and higher asset value. “So, there is a direct correlation to reduced energy consumption,” she says.

But Anthony M. Graziano, MAI, CRE, CEO of Integra Realty Resources, a commercial real estate valuation and advisory firm, says it is unlikely the market as a whole, absent regulatory pushes, would move fast enough to meet 2050 climate goals under a “Good Samaritan” theory of economics. “The primary driver has to be economic incentive–feasibility,” he says.

Regulatory pressure is already coming down as more municipalities pass ordinances on building-level carbon emissions that are tied to fines for those that don’t comply. For example, the first tranche of fines for New York City Local Law 97 will go into effect in 2024. In Boston, meanwhile, buildings that do not comply with emissions reporting requirements will eventually face fines of between $150 and $300 per day based on their size. And ones that do not reach the emissions standards could see fines of up to $1,000 per day. In addition, owners that do not accurately report emissions could see fines of up to $5,000. 

One of the challenges in the net zero business case is that it is still early in terms of developing quantifiable metrics. There are not enough buildings or portfolios that have achieved net zero goals to be able to offer data on how the strategies impact rents, occupancies and building values.

“There is certainly a component of the market that will sell the qualitative benefits, but we will not see measurable differences until we can quantify the economics,” says Graziano. Companies that are promoting qualitative benefits without economic realization are actually harming real efforts, because investors get poor returns and are discouraged from making changes across their entire portfolio, he says. “Other market makers are watching and seeking quantification, and the fuzzy math perpetuates more inaction,” he adds.

The CRE industry is working to create some metrics and benchmarks around the business case for net zero, but there is a long way to go. Traditional data points, such as building age, building operating cost analysis, market rent and tenant demand, are all primary current proxies for ESG, but are not explicitly derived indicators of ESG value, notes Graziano. One example of explicit indicators would be Platinum and Gold LEED buildings and their relationship to tenant demand and higher rents achieved in the market. For instance, mandates from GSA and others that a certain percentage of building leases must be for Platinum or Gold LEED buildings drives tenants to a limited stock of buildings. Theoretically, those buildings are then in higher demand and can command higher rents, he adds. 

 Cushman & Wakefield released a new study that compared rents at LEED-certified buildings delivered between 2010 and 2020 and compared them to non-certified buildings. The study found that, since 2015, rents for LEED-certified buildings averaged $4.13 or 11.1 percent higher rent than non-LEED-certified buildings.

“It is not inexpensive to achieve net zero overnight. Over time you can certainly do it in a more measured way. But the value and ROI in decarbonizing and reaching net zero is about more than increased rents and decreased operating expenses,” says Schantz. “There are a lot of different qualitative pieces, and more and more owners are seeing that.” And those qualitative factors, such as attracting and retaining tenants, future-proofing buildings and brand reputation are big drivers in the market these days, she adds.

New recycling techniques set to make electric vehicles greener

By Pratima Desai
View the original article here

A technician unpacks a completely burned Lithium-ion car battery before its dismantling by the German recycling firm Accurec in Krefeld, Germany, November 16, 2017. REUTERS/Wolfgang Rattay
A used Lithium-ion car battery is opened before its dismantling by an employee of the German recycling firm Accurec in Krefeld, Germany, November 16, 2017. Picture taken November 16, 2017. REUTERS/Wolfgang Rattay/File Photo

LONDON, July 1 (Reuters) – Researchers in Britain and the United States have found ways to recycle electric vehicle batteries that can drastically cut costs and carbon emissions, shoring up sustainable supplies for an expected surge in demand.

The techniques, which involve retrieving parts of the battery so they can be reused, would help the auto industry tackle criticism that even though EVs reduce emissions over their lifetime, they start out with a heavy carbon footprint of mined materials.

As national governments and regions race to secure supplies for an expected acceleration in EV demand, the breakthroughs could make valuable supplies of materials such as cobalt and nickel go further. They would also reduce dependence on China and difficult mining jurisdictions.

“We can’t recycle complex products like batteries the way we recycle other metals. Shredding, mixing up the components of a battery and pyrometallurgy destroy value,” Gavin Harper, a research fellow at the government-backed Faraday Institution in Britain, said.

Pyrometallurgy refers to the extraction of metals using high heat in blast furnaces, which analysts say is not economic.

Current recycling methods also rely on shredding the batteries into very small pieces, known as black mass, which is then processed into metals such as cobalt and nickel.

A switch to a practice known as direct recycling, which would preserve components such as the cathode and anode, could drastically reduce energy waste and manufacturing costs.

Researchers from the University of Leicester and the University of Birmingham working on the Faraday Institution’s ReLib project have found a way to use ultrasonic waves to recycle the cathode and anode without shredding and have applied for a patent.

The technology recovers the cathode powder made up of cobalt, nickel and manganese from the aluminium sheet, to which it is glued in the battery manufacture. The anode powder, which would typically be graphite, is separated from the copper sheet.

Andy Abbott, a professor of physical chemistry at the University of Leicester said separation using ultrasonic waves would result in cost savings of 60% compared with the cost of virgin material.

Compared with more conventional technology, based on hydrometallurgy, which uses liquids, such as sulphuric acid and water to extract materials, he said ultrasonic technology can process 100 times more battery material over the same period.

Abbott’s team has separated battery cells manually to test the process, but ReLib is working on a project to use robots to separate batteries and packs more efficiently.

As supplies and scrap levels take time to accrue, Abbott said he expected the technology to initially use scrap from battery manufacturing facilities as the feedstock and the recycled material would be fed back into battery production.

PROFITABLE RECYCLING

In the United States, a government-sponsored project at the Department of Energy called ReCell is in the final stages of demonstrating different, but also promising recycling technologies that refurbish battery cathode to make it into new cathode.

ReCell, headed by Jeff Spangenberger, has studied many different methods, including ultrasonics, but focused on thermal and solvent based methods.

“The U.S. doesn’t make much cathode domestically, so if we use hydrometallurgy or pyrometallurgy we have to send the recycled materials to other countries to be turned into cathode and shipped back to us,” Spangenberger said.

“To make lithium-ion battery recycling profitable, without requiring a disposal fee to consumers, and to encourage growth in the recycling industry, new methods that generate higher profit margins for recyclers need to be developed.”

There are challenges for direct recycling, including continuously evolving chemistries, Spangenberger said. “ReCell is working on separating different cathode chemistries.”

Early electric vehicle battery cells typically used a cathode with equal amounts of nickel, manganese, cobalt or 1-1-1. This has changed in recent years as manufacturers seek to reduce costs and cathode chemistries can be 5-3-2, 6-2-2 or 8-1-1.

The approach at Faraday’s ReLib project is to blend recycled with virgin material to get the required ratios of nickel, manganese and cobalt.

Why We Need Green Hydrogen

BY:  RENEE CHO
View the original article here

Green hydrogen has been in the news often lately. President-elect Biden has promised to use renewable energy to produce green hydrogen that costs less than natural gas. The Department of Energy is putting up to $100 million into the research and development of hydrogen and fuel cells. The European Union will invest $430 billion in green hydrogen by 2030 to help achieve the goals of its Green Deal. And Chile, Japan, Germany, Saudi Arabia, and Australia are all making major investments into green hydrogen.

Photo: Dave Pinter

So, what is green hydrogen? Simply put, it is hydrogen fuel that is created using renewable energy instead of fossil fuels. It has the potential to provide clean power for manufacturing, transportation, and more — and its only byproduct is water.

Where does green hydrogen come from?

Hydrogen energy is very versatile, as it can be used in gas or liquid form, be converted into electricity or fuel, and there are many ways of producing it. Approximately 70 million metric tons of hydrogen are already produced globally every year for use in oil refining, ammonia production, steel manufacturing, chemical and fertilizer production, food processing, metallurgy, and more.

There is more hydrogen in the universe than any other element—it’s been estimated that approximately 90 percent of all atoms are hydrogen. But hydrogen atoms do not exist in nature by themselves. To produce hydrogen, its atoms need to be decoupled from other elements with which they occur— in water, plants or fossil fuels. How this decoupling is done determines hydrogen energy’s sustainability.

Most of the hydrogen currently in use is produced through a process called steam methane reforming, which uses a catalyst to react methane and high temperature steam, resulting in hydrogen, carbon monoxide and a small amount of carbon dioxide. In a subsequent process, the carbon monoxide, steam and a catalyst react to produce more hydrogen and carbon dioxide. Finally the carbon dioxide and impurities are removed, leaving pure hydrogen.  Other fossil fuels, such as propane, gasoline, and coal can also be used in steam reforming to produce hydrogen. This method of production—powered by fossil fuels—results in gray hydrogen as well as 830 million metric tons of CO2 emissions each year, equal to the emissions of the United Kingdom and Indonesia combined.

When the CO2 produced from the steam methane reforming process is captured and stored elsewhere, the hydrogen produced is called blue hydrogen.

Photo: parent55

Hydrogen can also be produced through the electrolysis of water, leaving nothing but oxygen as a byproduct. Electrolysis employs an electric current to split water into hydrogen and oxygen in an electrolyzer. If the electricity is produced by renewable power, such as solar or wind, the resulting pollutant-free hydrogen is called green hydrogen. The rapidly declining cost of renewable energy is one reason for the growing interest in green hydrogen.

Why green hydrogen is needed

Most experts agree that green hydrogen will be essential to meeting the goals of the Paris Agreement, since there are certain portions of the economy whose emissions are difficult to eliminate. In the U.S., the top three sources of climate-warming emissions come from transportation, electricity generation and industry.

Long haul trucking is difficult to decarbonize.
 Photo: raymondclarkimages

Energy efficiency, renewable power, and direct electrification can reduce emissions from electricity production and a portion of transportation; but the last 15 percent or so of the economy, comprising aviation, shipping, long-distance trucking and concrete and steel manufacturing, is difficult to decarbonize because these sectors require high energy density fuel or intense heat. Green hydrogen could meet these needs.

Advantages of green hydrogen

Hydrogen is abundant and its supply is virtually limitless. It can be used where it is produced or transported elsewhere. Unlike batteries that are unable to store large quantities of electricity for extended periods of time, hydrogen can be produced from excess renewable energy and stored in large amounts for a long time. Pound for pound, hydrogen contains almost three times as much energy as fossil fuels, so less of it is needed to do any work. And a particular advantage of green hydrogen is that it can be produced wherever there is water and electricity to generate more electricity or heat.

Hydrogen has many uses. Green hydrogen can be used in industry and can be stored in existing gas pipelines to power household appliances. It can transport renewable energy when converted into a carrier such as ammonia, a zero-carbon fuel for shipping, for example.

Hydrogen can also be used with fuel cells to power anything that uses electricity, such as electric vehicles and electronic devices. And unlike batteries, hydrogen fuel cells don’t need to be recharged and won’t run down, so long as they have hydrogen fuel.

Fuel cells work like batteries: hydrogen is fed to the anode, oxygen is fed to the cathode; they are separated by a catalyst and an electrolyte membrane that only allows positively charged protons through to the cathode. The catalyst splits off the hydrogen’s negatively charged electrons, allowing the positively charged protons to pass through the electrolyte to the cathode. The electrons, meanwhile, travel via an external circuit—creating electricity that can be put to work—to meet the protons at the cathode, where they react with the oxygen to form water.

Hydrogen Hyundai. Photo: Adam Gautsch

Hydrogen is used to power hydrogen fuel cell vehicles. Because of its energy efficiency, a hydrogen fuel cell is two to three times more efficient than an internal combustion engine fueled by gas. And a fuel cell electric vehicle’s refueling time averages less than four minutes.

Because they can function independently from the grid, fuel cells can be used in the military field or in disaster zones and work as independent generators of electricity or heat. When fixed in place they can be connected to the grid to generate consistent reliable power.

The challenges of green hydrogen

Its flammability and its lightness mean that hydrogen, like other fuels, needs to be properly handled. Many fuels are flammable. Compared to gasoline, natural gas, and propane, hydrogen is more flammable in the air. However, low concentrations of hydrogen have similar flammability potential as other fuels. Since hydrogen is so light—about 57 times lighter than gasoline fumes—it can quickly disperse into the atmosphere, which is a positive safety feature.

Storing liquid hydrogen. Photo: Jared

Because hydrogen is so much less dense than gasoline, it is difficult to transport. It either needs to be cooled to -253˚C to liquefy it, or it needs to be compressed to 700 times atmospheric pressure so it can be delivered as a compressed gas. Currently, hydrogen is transported through dedicated pipelines, in low-temperature liquid tanker trucks, in tube trailers that carry gaseous hydrogen, or by rail or barge.

Today 1,600 miles of hydrogen pipelines deliver gaseous hydrogen around the U.S., mainly in areas where hydrogen is used in chemical plants and refineries, but that is not enough infrastructure to accommodate widespread use of hydrogen.

Natural gas pipelines are sometimes used to transport only a limited amount of hydrogen because hydrogen can make steel pipes and welds brittle, causing cracks. When less than 5 to 10 percent of it is blended with the natural gas, hydrogen can be safely distributed via the natural gas infrastructure. To distribute pure hydrogen, natural gas pipelines would require major alterations to avoid potential embrittlement of the metal pipes, or completely separate hydrogen pipelines would need to be constructed.

Fuel cell technology has been constrained by the high cost of fuel cells because platinum, which is expensive, is used at the anode and cathode as a catalyst to split hydrogen. Research is ongoing to improve the performance of fuel cells and to find more efficient and less costly materials.

A challenge for fuel cell electric vehicles has been how to store enough hydrogen—five to 13 kilograms of compressed hydrogen gas—in the vehicle to achieve the conventional driving range of 300 miles.

The fuel cell electric vehicle market has also been hampered by the scarcity of refueling stations. As of August, there were only 46 hydrogen fueling stations in the U.S., 43 of them in California; and hydrogen costs about $8 per pound, compared to $3.18 for a gallon of gas in California.

Hydrogen gas pump.
Photo: Bob n Renee

It all comes down to cost

The various obstacles green hydrogen faces can actually be reduced to just one: cost. Julio Friedmann, senior research scholar at Columbia University’s Center on Global Energy Policy, believes the only real challenge of green hydrogen is its price. The fact that 70 million tons of hydrogen are produced every year and that it is shipped in pipelines around the U.S. shows that the technical issues of distributing and using hydrogen are “straightforward, and reasonably well understood,” he said.

The problem is that green hydrogen currently costs three times as much as natural gas in the U.S. And producing green hydrogen is much more expensive than producing gray or blue hydrogen because electrolysis is expensive, although prices of electrolyzers are coming down as manufacturing scales up. Currently, gray hydrogen costs about €1.50 euros ($1.84 USD) per kilogram, blue costs €2 to €3 per kilogram, and green costs €3.50 to €6 per kilogram, according to a recent study.

Friedmann detailed three strategies that are key to bringing down the price of green hydrogen so that more people will buy it:

  1. Support for innovation into novel hydrogen production and use. He noted that the stimulus bill Congress just passed providing this support will help cut the cost of fuel cells and green hydrogen production in years to come.
  2. Price supports for hydrogen, such as an investment tax credit or production tax credit similar to those established for wind and solar that helped drive their prices down.
  3. A regulatory standard to limit emissions. For example, half the ammonia used today goes into fertilizer production. “If we said, ‘we have an emission standard for low carbon ammonia,’ then people would start using low carbon hydrogen to make ammonia, which they’re not today, because it costs more,” said Friedmann. “But if you have a regulation that says you have to, then it makes it easier to do.” Another regulatory option is that the government could decide to procure green hydrogen and require all military fuels to be made with a certain percentage of green hydrogen.
The California National Guard designed hydrogen fuel cells that use solar energy for electrolysis to make green hydrogen. Photo: US Army Environmental Command

Green hydrogen’s future

A McKinsey study estimated that by 2030, the U.S. hydrogen economy could generate $140 billion and support 700,000 jobs.

Friedmann believes there will be substantial use of green hydrogen over the next five to ten years, especially in Europe and Japan. However, he thinks the limits of the existing infrastructure will be reached very quickly—both pipeline infrastructure as well as transmission lines, because making green hydrogen will require about 300 percent more electricity capacity than we now have. “We will hit limits of manufacturing of electrolyzers, of electricity infrastructure, of ports’ ability to make and ship the stuff, of the speed at which we could retrofit industries,” he said. “We don’t have the human capital, and we don’t have the infrastructure. It’ll take a while to do these things.”

Many experts predict it will be 10 years before we see widespread green hydrogen adoption; Friedmann, however, maintains that this 10-year projection is based on a number of assumptions. “It’s premised on mass manufacturing of electrolyzers, which has not happened anywhere in the world,” he said. “It’s premised on a bunch of policy changes that have not been made that would support the markets. It’s premised on a set of infrastructure changes that are driven by those markets.”

Researchers on working on hydrogen storage, hydrogen safety, catalyst development, and fuel cells. Photo: Canadian Nuclear Laboratories

There are a number of green energy projects in the U.S. and around the world attempting to address these challenges and promote hydrogen adoption. Here are a few examples.

California will invest $230 million on hydrogen projects before 2023; and the world’s largest green hydrogen project is being built in Lancaster, CA by energy company SGH2. This innovative plant will use waste gasification, combusting 42,000 tons of recycled paper waste annually to produce green hydrogen. Because it does not use electrolysis and renewable energy, its hydrogen will be cost-competitive with gray hydrogen.

A new Western States Hydrogen Alliance, made up of leaders in the heavy-duty hydrogen and fuel cell industry, are pushing to develop and deploy fuel cell technology and infrastructure in 13 western states.

Hydrogen Europe Industry, a leading association promoting hydrogen, is developing a process to produce pure hydrogen from the gasification of biomass from crop and forest residue. Because biomass absorbs carbon dioxide from the atmosphere as it grows, the association maintains that it produces relatively few net carbon emissions.

Breakthrough Energy, co-founded by Bill Gates, is investing in a new green hydrogen research and development venture called the European Green Hydrogen Acceleration Center. It aims to close the price gap between current fossil fuel technologies and green hydrogen. Breakthrough Energy has also invested in ZeroAvia, a company developing hydrogen-fueled aviation.

In December, the U.N. launched the Green Hydrogen Catapult Initiative, bringing together seven of the biggest global green hydrogen project developers with the goal of cutting the cost of green hydrogen to below $2 per kilogram and increasing the production of green hydrogen 50-fold by 2027.

Ultimately, whether or not green hydrogen fulfills its promise and potential depends on how much carmakers, fueling station developers, energy companies, and governments are willing to invest in it over the next number of years.

But because doing nothing about global warming is not an option, green hydrogen has a great deal of potential, and Friedmann is optimistic about its future. “Green hydrogen is exciting,” he said. “It’s exciting because we can use it in every sector. It’s exciting because it tackles the hardest parts of the problem—industry and heavy transportation. It’s interesting, because the costs are coming down. And there’s lots of ways to make zero-carbon hydrogen, blue and green. We can even make negative carbon hydrogen with biohydrogen. Twenty years ago, we didn’t really have the technology or the wherewithal to do it. And now we do.”

U.S. Electric Vehicle Market Poised for Record Sales in 2021, According to Edmunds

Experts say 2021 could be a pivotal year for EV adoption thanks to greater selection of EV offerings, rising consumer interest
NEWS PROVIDED BY EDMONDS
View the original article here

SANTA MONICA, Calif., Feb. 2, 2021 /PRNewswire/ — Electric vehicle sales are poised to hit their highest level on record in 2021, according to the car shopping experts at Edmunds. Edmunds data shows that EV sales made up 1.9% of retail sales in the United States in 2020; Edmunds analysts expect this number to grow to 2.5% this year.

“After years of speculation and empty promises, 2021 is actually shaping up to be a pivotal year for growth in the EV sector,” said Jessica Caldwell, Edmunds’ executive director of insights. “We’re not only about to see a massive leap in the number of EVs available in the market; we’re also going to see a more diverse lineup of electric vehicles that better reflect current consumer preferences. And given that the new presidential administration has pledged its support for electrification, the U.S. is likely to see incentive programs targeted at fostering the growth of this technology further.”

“2021 is actually shaping up to be a pivotal year for growth in the EV sector” – Jessica Caldwell, analyst, Edmunds

Edmunds analysts anticipate that 30 EVs from 21 brands will become available for sale this year, compared to 17 vehicles from 12 brands in 2020. Notably, this will be the first year that these offerings represent all three major vehicle categories: Consumers will have the choice among 11 cars, 13 SUVs and six trucks in 2021, whereas only 10 cars and seven SUVs were available last year. For the full list of EVs expected to come to market in 2021, please see the table below.

This diverse spread of EV offerings should help encourage stronger loyalty among EV owners, which has dwindled over the years as shoppers have gravitated toward larger vehicles. According to Edmunds data, 71% of EV owners who didn’t buy another EV traded in their vehicle for a truck or SUV in 2020, compared to 60% in 2019 and 34% in 2015.

“Americans have a love affair with trucks and SUVs, to the detriment of EVs, which have until recently been mostly passenger cars,” said Caldwell. “Automakers should have a much better shot of recapturing some of the EV buyers who they’ve lost now that they can offer larger, more utilitarian electric vehicles.”

Edmunds analysts note that this infusion of fresh new products comes at a time where the market is also seeing a positive shift in consumer interest in EVs. According to Google Trends data, consumer searches for electric trucks and SUVs have recently hit a high point after trending upward for years.

“Besides affordability, one of the biggest barriers to increased EV sales has simply been tepid consumer reception — it’s been tough for companies that aren’t Tesla to crack the code of how to get shoppers hyped up for these vehicles,” said Caldwell. “But in the past year we’ve seen automakers throw huge advertising dollars behind their EV launches in an attempt to drum up some buzz, and it’s promising that consumers seem to at least be more aware of the options out there.”

As more consumers look to EVs as a possibility for their next car purchase, Edmunds experts emphasize that shoppers should take extra time to consider their alternatives and do their research.

“Buying an EV is an entirely different beast than a traditional car purchase, so extra research and diligence are key,” said Ivan Drury, Edmunds’ senior manager of insights. “Range and weather conditions play a huge factor in determining whether certain EVs make sense for your everyday needs, and whether you own a home with a garage or rent an apartment could affect your charging situation. Federal and state tax incentives are at play with these purchases. And with a number of manufacturers following Tesla’s direct sale model, there might not be opportunities to take a test drive, or even to trade in your current vehicle, like you would at a traditional dealership.”

To help consumers, the Edmunds experts have put together a comprehensive analysis of the true cost of powering an EV, and they also maintain an authoritative EV rankings page that highlights the best electric vehicles currently in production.

Electric Vehicles Expected to be Available for Sale in 2021

Model YearMakeModelVehicle Category
2021AtlisXTlarge truck
2021Audie-tronluxury midsize SUV
2021Audie-tron Sportbackluxury midsize SUV
2021BMWi3luxury subcompact car
2021ChevroletBolt EVsubcompact car
2021FordMustang Mach-Emidsize SUV
2021HerculesAlphalarge truck
2021HondaClaritymidsize car
2021HyundaiIoniq Electriccompact car
2021HyundaiKona Electricsubcompact SUV
2021KiaNiro EVsubcompact SUV
2021Lordstown MotorsEndurancelarge truck
2021LucidAirluxury large car
2021Mercedes-BenzEQCluxury compact SUV
2021MiniHardtop 2 Doorsports car
2021NissanLeafcompact car
2021Polestar2luxury midsize car
2021PorscheTaycanluxury large car
2021RivianR1Sluxury large SUV
2021RivianR1Tmidsize truck
2021TeslaCybertrucklarge truck
2021TeslaModel 3luxury compact car
2021TeslaModel Sluxury large car
2021TeslaModel Xluxury large SUV
2021TeslaModel Yluxury compact SUV
2021VolvoXC40 Rechargeluxury subcompact SUV
2021VWID.4compact SUV
2022ChevroletBolt EUVcompact SUV
2022GMCHummer EV SUVlarge truck
2022NissanAriyacompact SUV


A Renewed Focus on Energy Efficiency – Energy Audits

By: Julie Lundin, LEED AP ID+C, WELL AP

2020 is in our rearview mirror.  The pandemic will end, most likely sometime in late 2021.  Businesses are beginning to restart and plan.  However, much has changed since the pandemic took hold of our lives and economy.  Initially the commercial building industry’s focus has been on the health issues of building occupants by addressing IAQ, employee density, social distancing, occupancy patterns and work schedules. But an important aspect not to be overlooked is to refocus on proactive strategies that manage operating expenses. With increased vacancy in commercial properties, decreased economic and business activity, now is the time to institute energy conservation and cost-saving measures to help contain building operating costs. A commercial energy audit will help building owners become more profitable by reducing wasted energy use whether operating under normal business conditions or COVID-19.

Commercial Energy Audits

What comes to mind when the term “audit” is used?  I usually think of a financial audit which requires a close examination of documents and perhaps a negative outcome.  The term “energy audit” might initially invoke the same response from building owners and managers. The idea of closely examining a buildings energy needs and operating efficiency might appear to be looking for unwanted change especially if the building seemingly operates fine daily. A commercial energy audit should be viewed as an energy opportunity assessment to reduce energy expenses and increase profit. Compared to a financial audit when the best that could happen is nothing, an energy audit has positive outcomes.

What motivates an energy audit?

With the inherent push back on change what motivates building owners or CFO’s to conduct an energy audit? It is usually financial driven, sustainability driven or a combination of both.  An energy audit is often the first step in making a commercial building more efficient.  The goal of an energy audit is of course to identify energy-saving opportunities but can also increase asset values, lower ownership costs, and promote environmental stewardship, human comfort, health, and safety.

What is involved in an energy audit?

Buildings, whether long-standing or recently constructed, have potential for energy improvements.  Typically, an energy audit is a loose term and follows a general framework of identifying energy usage throughout the building, assessing building systems, and conducting on- site inspections. A final report is produced outlining energy conservation and system improvement measures.

However, an energy audit is a specific term defined by ASHRAE, a global organization focused on advancing technology to improve sustainability. ASHRAE specifies three types of energy audits:

  • Level 1: A basic, high-level walkthrough. It requires data collection regarding the operation of building systems and a review of facility utility bills with the purpose of identifying major problem areas.
  • Level 2: Includes a Level 1 audit and additional complex, detailed calculations in connection with proposed energy efficiency measures.  Note: The literature suggests an entire workbook of calculations for each identified project, which means people tend not to identify small projects because the write-up is the same. As a result, a Level 2 may less useful because organizations do not consider ways to address the “low-hanging fruit” (such as LED lighting, for example) which tend to have low-cost and high return—avenues for energy efficiency that are certainly worthy of consideration.
  • Level 3: Sometimes called a “comprehensive audit,” this level includes more detailed data analysis related to the projects identified during the Level 2 audit, as well as extensive cost and savings calculations.

The result of any commercial building energy audit is to analyze and understand a facility’s energy usage. Then to design appropriate strategies for making improvements that will reduce energy input and ultimately save money.

The Energy Audit Process

Emerald Skyline’s team is trained to assist property owners and facility managers understand their buildings and discover the greatest opportunities for energy savings.  We specialize in energy management solutions and discover the greatest opportunities for energy savings. The energy audit process allows us to determine what systems are causing you the most money on your utility bills.

Review Historic Utility Bills

To begin our process, we collect facility’s historic utility bills to determine the facility’s annual energy consumption.

Examine Existing Assets

Next, our team collects on-site data by performing the energy audit. During this time, we are determining potential solutions that maximize savings.

Present Economic Solutions

After we complete the audit and compare the utility bills, our team works together to design comprehensive systems custom tailored to each individual facility that maximizes energy savings.

 Mechanical Systems

HVAC units, boilers, hot water heaters, chillers, and more to determine current state of equipment, age, life expectancy, and performance.

Interior and Exterior Lighting

Lighting technology has increased significantly over the years. With LEDs not only do you improve lighting quality, but significantly reduce electric usage

Thermal Boundaries

The building envelope (windows, insulation, roofs, etc.) seal is essential to keep your conditioned spaces from leaking air. Ensuring proper insulation throughout the facility is key to minimizing heating and cooling costs.

Destratification Fans

In facilities with tall ceilings, maintaining consistent airflow helps maintain comfort in the facility.

Every facility is custom and operates differently. Our team has audited facilities across many industries from retail, hotels, offices, multi-family, and more. We have an expanded knowledge on systems and are flexible to tackle any project. In this time of uncertainty, it is important to keep operating expenses to a minimum. Unnecessary costs include costs for energy that you do not need to use. An energy audit will help determine the best energy conservation measures for your building.

Energy Awareness Brings Savings During COVID-19

As commercial real estate owners face budget constraints, rediscovering efficient energy infrastructure paints a silver lining.

By: Diana Mosher
View the original article here .

As we settle into fall, some U.S. employees are being summoned back to the office. Physical occupancy in office properties was at 25 percent as of Sept. 9, according to data collected by Kastle Systems in 10 large U.S. cities. Most people are continuing to work from home, however, many with no return date in mind. In fact, when a viable COVID-19 vaccine is finally rolled out, some might discover they have no office to return to, with companies rethinking whether they need a physical base at all. Facing this turn of events, property owners and managers are prioritizing energy efficiency as they grapple with fluctuating consumption levels.

“Managing occupied, partially occupied and unoccupied spaces with cooling, heating and lighting is essential,” said Barry Wood, LEED accredited professional & director of retail operations at JLL. “Many tenants will not fully reoccupy, and owners and managers must be able to adjust and adapt their energy usages to the needs of the building and tenant.”

Built in 2008, 22 West Washington is one of Chicago’s trophy assets. The 17-story, 439,434-sq.ft. commercial property was designed by architecture firm Perkins + Will with high speed (minimal wait time) elevators; 14-inch raised floors for power, data and tenant-designed HVAC; digitally controlled, high capacity HVAC; and open floor plans that can be modified to meet social distancing protocols. 

According to Wood, improving energy efficiency is a differentiator in most buildings because utilities typically rank in the top five for expenses. “Also, because of COVID-19, many buildings are seeing that rental income and expense recoveries are down, and owners and managers must be creative in managing the balance of the property needs. Maintaining conveniences to the tenants and guests coming to the property is essential to ensure they are comfortable being there.”

Best practices depend on the facility, but Wood said they will certainly include varying the set points on chillers and rooftop equipment; ensuring the operation of chillers, cooling towers, air handlers and roof op equipment is within the highest efficiency zone; and working with tenants to cluster workers—within CDC suggested guidelines—for lighting and cooling efficiencies.

Additionally, properties should stagger schedules to take advantage of natural daylighting. Another item on the list is the revision of settings on occupancy sensors for lighting and cooling in walk-through traffic areas as well as individual offices that may have shorter stay times.

It will be a challenge to obtain the same capital improvement dollars as before. Wood said, “To be approved for this type of project at properties, many owners will focus this capital money on ‘must do’ or ‘re-tenanting’ projects rather than operating efficiencies, therefore the building operations and engineering team will be essential in finding savings through operating efficiencies.”

MONITORING ENERGY USAGE

Technology is bringing big advances in monitoring energy usage, but adoption has been sluggish. However, since COVID-19 has pushed up operating costs, having an efficient building has become sexy in the minds of owners. Energy consultants offering audits, such as Bright Power, have the receipts to prove that energy monitoring does save money and can reduce carbon emissions.

“When stay-at-home orders began, we saw our office and higher education clients’ building staff adjust equipment schedules to reflect the new reduced occupancy schedules,” said Samantha Pearce, director of energy management services at Bright Power. Clients that had action plans—or were able to easily prepare plans based on what equipment was essential for limited occupancy—are saving more.

According to Pearce, the best tip to offer is finding out how your equipment is operating, and how to adjust settings quickly and efficiently. “Remote monitoring and energy management services are an impactful way to mitigate the impact of COVID-19 on maintenance and operations plans.”

We had a client who needed to switch from heating to cooling at their building. We were able to walk them through the switch remotely since we had installed a remote monitoring system before the stay-at-home order. And, we were able to verify that the switch happened correctly, rather than have the property staff wait for resident complaints or before receiving increased utility bills,” she said.

Since the pandemic began, virologists have been preaching for bringing in as much outside air as possible. Doing this during mild weather can actually improve efficiency; for example, by utilizing the spring outdoor air to lower the temperature in a crowded auditorium instead of using a cooling tower. However, during extreme weather, increasing outdoor air can bring a drop in efficiency. In both cases, the outcomes depend greatly on the site’s mechanical equipment.

“It becomes extremely important to know how to capture those savings (during mild weather) in order to possibly counter the potential increased costs of increasing outdoor air supply during the extreme weather seasons,” Pearce said.

NEW OPERATIONAL GUIDANCE

Commercial buildings sitting vacant since March are significantly less energy efficient and more expensive to operate. According to Jeff Gerwig, LEED green associate & national engineering manager for Colliers International U.S., the reason is new operational guidance from the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE) during the pandemic. ASHRAE’s new standards help create healthier indoor environments. However, energy efficiency measures implemented for years are now being reversed to achieve the recommendations.

“The primary impacts on energy efficiency and operating costs have been centered around three items,” explained Gerwig. “First, the increase of HVAC operating hours—ASHRAE recommends increasing building operating hours, if possible, up to 24/7. Also, outdoor air dampers are being opened to maximum percentages allowable to bring more outdoor air inside the property and create higher demand for HVAC operations.”

ASHRAE also recommends that dampers be opened up to 100 percent if possible, and Demand Control Ventilation (DCV) be disabled. “This technology worked in conjunction with outdoor air dampers. It measured indoor pollutant concentrations and used precise amounts of outdoor air to maintain spaces.” Gerwig added, “Given that ASHRAE recommends outdoor air percentages be increased to highest levels possible, these devices are being disabled.”

CREATING SAFE, HEALTHY ENVIRONMENTS

Employees are bound to continue reoccupying buildings in coming months, providing an excellent opportunity to consider both air quality and whether buildings are on track with long-term sustainability or efficiency goals.

“The types of air quality requirements we’re seeing put in place are very dependent on both the region/state and the type of building and can have a variety of implications on energy efficiency,” said Lou Maltezos, executive vice president of Ameresco, a company that specializes in renewable energy and energy efficiency consulting.

“As building owners have considered and experienced what ‘back to work’ looks like in communities around the world, we’re seeing a number of customers consider items such as touchless controls, updated HVAC systems and automated entry/exit systems to address both the efficiency needs of the building and the health and safety of the occupants,” Maltezos added.

For example, with the correct process and tenant instruction in place, owners can implement technologies such as ionization to their outside air units in return ducts that may reduce the amount of air needed to condition a space. Maltezos added that efficiency relies on utilizing data not only from the space, but the air handlers and controls system as well, for providing the correct amount of outside air.

RETHINKING PRIORITIES

In the current climate, it is essential to stay in touch with thought leadership on all matters related to energy. “Unfortunately, in most cases the energy savings reported (since COVID-19) for most buildings are not as significant as expected and not in line with occupancy reductions,” weighed in Thomas Vazakas, Cushman & Wakefield associate director of energy, infrastructure and sustainability for the EMEA region. “This is due to the inability in most buildings to have effective controls and zoning.”

For example, heating and cooling is provided to all open plan areas, whether occupied or not. Similarly, in many cases there are no occupancy sensors for lighting, therefore most, if not all, the lights will be on even though only a small area of the office needs it.

“As a result, we see most buildings using very similar energy to heating, cooling or lighting even though their occupancy is 50-90 percent less than it used to be,” explained Vazakas. “This is a great opportunity to install adequate controls in our buildings to ensure no energy is wasted.”

As the effects of the health crisis unfold, owners and managers continue testing in resilience. “Surely the loss of human lives is devastating, but at the same time COVID-19 presents an opportunity to rethink our priorities and change the way we live—and how we use our buildings. Many property owners are already looking into this and trying to use this crisis to help them develop and implement their sustainability goals and especially their corporate plans to meet Net Zero Carbon,” Vazakas concluded.

When this agenda also results in operational savings, it’s icing on the cake.

How to build the foundation for a hydrogen economy in the US

By: Alan Mammoser
View the original article here

New hydrogen-based energy projects are cropping up across the world.

Announcements of plans and projects for hydrogen-based energy are appearing with scale and ambition in Europe and Asia. The United States, in contrast, is not seeing the same sort of headline-grabbing initiatives. But the United States is making quiet progress and laying the basis for what soon could emerge as a national strategy for hydrogen energy.

The European Union’s new “Hydrogen Strategy,” closely linked to its “Energy System Integration Strategy,” wants to create a large regional hydrogen market encompassing Eastern Europe and North Africa. Northeast Asia is on par with Europe regarding plans for hydrogen adoption. Japan’s far-reaching planning includes the import of “blue hydrogen” (produced with carbon capture) from major oil and gas exporting countries of the Middle East.

While the U.S. has not announced a major effort of this scale, significant progress is being made in envisioning and initiating a future “hydrogen economy.” The U.S. government is funding a dedicated initiative that focuses on emergent technologies and market development.

Meanwhile, a major industry group has published a realistic “roadmap” that sets out a 10-year timeline for new technology deployment and the opening of markets. 

DOE does hydrogen

The US Department of Energy’s H2@Scale program, described as a “multi-year initiative to fully realize hydrogen’s benefits across the economy,” is a 4-year old initiative that is beginning to show results. It sees hydrogen as an integration technology that enhances the performance of diverse energy sources and plays a key role in facilitating a low carbon energy system.

During the past year, DOE channeled more than $100 million in grants to some 50 projects to further the H2@Scale initiative. They are funded through DOE’s Energy Efficiency and Renewable Energy Office (EERE), through its Hydrogen and Fuel Cell Technologies Office (HFTO) in cooperation with other EERE offices. Just last month, EERE announced about $64 million for 18 projects in fiscal year 2020.

The selected projects show great breadth and focus where technological development is required to broadly advance the deployment of hydrogen throughout the U.S. energy system. Taken together, they show the key role hydrogen is expected to play in de-carbonizing transport, heavy industry, energy storage and other energy-intensive sectors.

“6 projects are devoted to research and development on fuel cell technology and manufacturing of heavy-duty fuel cell trucks.”

Six projects are devoted to research and development on fuel cell technology and manufacturing of heavy-duty fuel cell trucks. There is support for private sector R&D on electrolyzer manufacturing, and for corporate and academic research on hydrogen storage, specifically high-strength carbon fiber for hydrogen storage tanks. There are two projects to spur demonstrations of large-scale hydrogen use at ports and data centers, and academic research on application of hydrogen for the production of “green steel.” One project is devoted to a training program for a future hydrogen and fuel cell workforce. 

“H2@Scale is identifying new and emerging markets, where the integration of hydrogen technologies can add value,” says Sunita Satyapal, EERE HFTO director. “Some examples of these markets are data centers, ports, steel manufacturing, and medium and heavy-duty trucks.”

Satyapal says that projects are designed to bridge gaps in technology innovation, with demonstrations of how to turn hydrogen opportunities into real solutions. All research, development and demonstration under the purview of HFTO is guided by technical, performance and cost targets. The targets have been developed with industry input to ensure that new technologies will be competitive with incumbent technologies.

“Projects will emphasize strengthening the hydrogen supply chain through innovative manufacturing approaches and techniques,” she says.

“Projects will emphasize strengthening the hydrogen supply chain through innovative manufacturing approaches and techniques.”

In addition to the competitively selected and funded projects, over 25 H2@Scale projects are under lab cooperative agreements. The Cooperative Research and Development Agreements (CRADA) enable national laboratories to work with industry on key technical areas to advance H2@scale. A new call for CRADA projects recently was made with up to $24 million available for collaborative projects at national laboratories in two priority areas: hydrogen fueling technologies for medium- and heavy-duty FCEVs; and hydrogen blending in natural gas pipelines.

Industry input

“The U.S. Department of Energy’s H2@Scale program is crucial to enabling broader commercialization of transformational hydrogen and fuel cell technologies,” says Morry Markowitz, president of the Fuel Cell and Hydrogen Energy Association (FCHEA). “Many of these projects are advancing hydrogen applications in traditionally hard-to-decarbonize markets such as heavy-duty transportation, shipping propulsion and steel production.”

FCHEA, a Washington, D.C.-based industry association that seeks to promote commercialization and markets for fuel cells and hydrogen energy, has produced a comprehensive vision for a “Hydrogen Economy.” Its “Road Map to a U.S. Hydrogen Economy” looks at the full spectrum of potential applications: as a low-carbon (potentially zero-carbon) fuel for residential and commercial buildings; as an important fuel in the transportation sector; as a fuel and feedstock for industry and long-distance transport; as an important player in the power sector for power generation and grid balancing.

“An early opportunity is seen in states that have renewable energy standards, where the appropriate regulatory framework can allow hydrogen to begin to have a role in electric grid stability and storage.”

FCHEA’s road map may well prefigure an official strategy for hydrogen, should the U.S. government get serious about comprehensive planning and goal-setting for a low carbon energy future. It has four phases: 2020-22 (immediate steps); 2023-25 (early scale-up); 2026-30 (diversification); and beyond 2030 when the group would expect a “broad rollout” of hydrogen applications.

The immediate steps start with setting goals at state and national levels. They also focus on the best opportunities to scale mature applications, seeking cost reductions that will open new opportunities. An early opportunity is seen in states that have renewable energy standards, where the appropriate regulatory framework can allow hydrogen to begin to have a role in electric grid stability and storage.

In early scale-up, large-scale hydrogen production and demand starts to bring costs down. The road map sets specific goals for fuel cell electric vehicles (FCEVs), both light and heavy-duty, and calls for scaling up the fueling station network. Retrofitting of power generation will allow enhanced grid balancing while blending with natural gas for buildings also begins.

Diversification begins at mid-decade with some 17 million metric tons of low-carbon hydrogen fuel consumed annually and 1.2 million FCEVs sold. By the end of the decade the critical infrastructure is in place with the hard-to-decarbonize sectors of heavy industry and aviation being affected. An economy-wide carbon price will facilitate this expansion. 

“This lofty vision for hydrogen will rely on strong government leadership and close cooperation with industry.”

Beyond 2030, the backbone infrastructure of hydrogen begins to appear at large-scale, with low-carbon hydrogen production, a hydrogen distribution pipeline network, and a large fueling station network across the U.S. By 2050, the adoption of hydrogen fuel cells for distributed power is standard, while on-site electrolyzers support local grids, energy storage and load balancing while providing hydrogen for fueling stations. In industry, low-carbon hydrogen is a widely used feedstock, produced either with carbon capture and storage or with dedicated renewables and on-site water electrolysis.

This lofty vision for hydrogen will rely on strong government leadership and close cooperation with industry. The FCHEA’s road map notes that European and Asian countries are investing in the groundwork for a future hydrogen economy. The group calls on the U.S. to not fall behind.

Adaptive Reuse Project Auto Body Shop Transformed into Live-Work Gem in Sunny Boca Raton

By: Julie Lundin, LEED AP ID+C, IIDA

So, what does adaptive reuse mean in real life?

Adaptive reuse is when you go to an art gallery… in a former church, when you attend a community event… in an old barn, when you book a Costa Rican vacation and your hotel is made out of shipping containers!  With the COVID-19 pandemic, the concept of repurposing the built environment has become even more important. Vacant office space becomes a healthcare facility.  Hotels turn into healthcare worker housing. A shopping mall is suddenly a medical center.

As an interior designer, I have always been intrigued by adaptive reuse projects.  Projects where a design team has expertly executed a vision for a forgotten run-down building or interior space and brought it back to life. They hold a special place in my heart. When the opportunity arose to purchase, design, and renovate an abandoned auto garage in Boca Raton to use as a live/work space, it was a dream come true.  As an adaptive reuse project, the most important initial points of consideration begin with safety, accessibility, and compatibility. These basic points are relevant no matter what is being considered, from energy to building materials to assessing current building code requirements.

Keeping the form or structure of a building intact while changing its function is challenging. However, it can provide significant environmental and economic benefits. Adaptive reuse projects have utilized sustainable design concepts long before LEED and green building became popular.  Adaptive reuse is one of the most maximized uses of recycling.  The value of reuse, recycle and repurpose is intrinsic to these projects. 

Benefits of Adaptive Reuse

  • Adaptive reuse is sustainable
    • Greenest building is one that already exists
    • Reduction in building materials needed to transform a space
  • Environmental Stability
    • Reduces energy consumption associated with demolishing a structure
    • And building a new one to replace it
  • Economic Stability
    • Potential cost benefits associated with greenfield development
      • Legal issues
      • Zoning problems
      • Finance
      • Design and Construction Costs
      • Environmental Impacts
  • Spaces may be useful for fledgling businesses
    • 16% less costly than other forms of construction
    • Results in lower leasing rate
  • Faster than new construction
    • Renovated existing building ready for occupancy sooner
  • Preservation of local identity
    • Older buildings add and establish the character of local built environments
    • Preserves a local sense of place and authentic experience
  • Utilization of a previously developed site
    • Avoids development of greenfields
    • Utilizes existing utility infrastructure
    • Minimizes impact on watersheds and stormwater systems
  • Reusing existing building elements
    • Cost savings
    • Embodied energy savings
    • Construction waste savings
    • Time savings
  • Utilize the character of existing spaces and materials

Below is my adaptive reuse project story.  I hope you enjoy it!

Auto Body Shop Transformed into Live-Work Gem in Sunny Boca Raton

AFTER (Continue reading for Before…)

Boca Raton, Florida is well known for its affluent gated golf communities, manicured landscapes, and pristine beaches. Unlike cities such as Pittsburgh and Cincinnati where industrial is synonymous with the name, Boca’s industrial area is inconspicuous.  That is why the unexpected location of this industrial section is the perfect setting for a hidden gem, a distinctive live-work studio. What was once a run-down auto body shop with ground contamination was transformed into an office, studio, and residence. With a commitment and passion for design, the built environment, and sustainability, this industrial property has been repurposed into a warm, inviting, and environmentally friendly enclave.

Auto garage office BEFORE

The base footprint of the building is 1,950 square feet. The front of the building houses the residential space which includes a kitchen, bathroom, open living space and a cozy loft which provides an additional 240 square feet. This portion of the building was designed to be self-contained with a separate entrance and electric meter should future usage needs change. A peek inside the space shows a metal spiral staircase leading to the loft. The spiral stairs were kept intact from the original body shop but painted a soft metallic gold as a nod to the design firm’s name Golden Spiral Design.

AFTER

The small footprint of 1,950 square feet required creative design solutions to maximize the multi –

functionality of the space. The live work concept had to become truly integrated based on the building size.  The residential component made sense to be in the front portion of the building which allows a separate entrance.  The main auto garage became the office/studio but is designed as a flex space to accommodate large meetings or entertaining on the weekends. To delineate areas of the open space, furniture placement, lighting and plants were utilized.

Auto garage BEFORE

The back portion of the building was originally an auto painting stall and allows for privacy once the large, colorful barn door is closed.  High gloss cabinetry was added for much needed storage and includes a murphy bed. This space also contains an added ADA bathroom, free standing glass shower, and washer and dryer.

 The walls are painted a crisp white which showcase the concrete block walls, their inherent imperfection, and years of use.  A modified exposed interior was created with galvanized metal soffits that hide electrical and air conditioning components.  The three original overhead garage doors are still intact and used as metal shades for privacy and sun control.  The garage concrete floors were polished and sealed still showing the shapes, imperfections, and natural patina of the building. Old Chicago brick was added to both the interior and exterior walls to emulate the character of old industrial buildings. 

AFTER

The grounds were designed to visually create an inviting enclave.  Sustainable fencing was installed which offers privacy and security. The front apex, once an eyesore, is a green oasis with bronze trellises, jasmine vines, orchids, and a custom mosaic.  Sustainable, resilient and energy efficient principles were applied throughout the design and specifications of this building.

Building BEFORE

Below are key sustainable concepts that were utilized for this project.

  • Site Remediation
  • Construction Waste Recycling
  • Adaptive Reuse of Undesirable Property
  • Highly Reflective Roof and added Insulation
  • No additional Building Footprint added
  • Solar Panels and Battery Storage
  • Energy Efficient HVAC
  • Energy Efficient Windows
  • Energy Efficient LED Lighting
  • Low Flow Plumbing Fixtures
  • Energy Efficient Appliances
  • Recycling and Composting
  • Low VOC Paint and Finishes
  • Daylighting
  • Interior Plantscapes
  • Exterior Drip Irrigation System

Converting this building to a multi-use habitable space was both challenging and rewarding.  It was important to design the space using the existing building footprint (bigger is not better), to remediate the undesirable brownfield, to take advantage of the industrial character, and to promote sustainability throughout the entire design process. 

With the arrival of the COVID pandemic it has never been more important to have a healthy and safe place to work.  For questions about the adaptive reuse of this building – or the potential of a building you own – please contact me, Julie Lundin, at (561) 866-4741 or [email protected].

Renovation, Restoration, and Adaptive Reuse: The Understated Value of Existing Buildings

It’s not enough to design super-efficient new buildings. To reach zero-net carbon, architects have to improve performance in existing buildings, and make the most of the embodied carbon we’ve already spent on them.

By KATIE GERFEN
View the original article here

Given that we’re on target to double the current square footage of building stock globally by 2060, it would be criminal to ignore existing building inventory as an opportunity for reuse. Quinn Evans principal emeritus and 2018 AIA president Carl Elefante, FAIA, and senior associate Richard JP Renaud, AIA, explain why renovation and adaptive reuse—staples for their firm—are critical to achieving the necessary carbon benchmarks.

You have said that “the greenest building is the one that is already built.” Why are the renovation and adaptive reuse of existing buildings so important to achieving zero net?
Carl Elefante, FAIA: We have a carbon burden that already exists in the built environment. As designers, we’re thinking about the future, we’re thinking about new buildings. The challenge is to not increase the current carbon burden, which means new buildings have to be much, much more energy-efficient, contributing much less carbon, ultimately contributing zero. But that does nothing to reduce the existing carbon burden. We’re not going to get to zero without drawing down from where we are today. To do that, we have to address the performance of existing buildings.

How should architects and developers approach the existing building stock that they should be considering for renovation?
Elefante: “The mountains and the carpet” is Ed Mazria’s description—the “mountain” of modern, tall, dense buildings surrounded by a “carpet” of midcentury and earlier low-density buildings—and it describes an important duality that exists when you start to look at the carbon needs. The types of policies and programs needed to address getting to zero carbon with the large downtown buildings is very different from the challenge of the dispersed buildings in the carpet.

What are some of the challenges?
Elefante: The concentration of dense, large buildings downtown has a relative handful of owners. To get at their carbon footprint, you’re dealing with a few stakeholders. The projects are large enough to potentially fund all of the analytical work of energy modeling and life cycle assessment that needs to be done to reach performance goals. In the carpet, you have many thousands more owners, down to the ones with a single property. The scale is so small that it’s very hard to say to an individual homeowner, “Spend money doing modeling, life cycle assessments, and optimizing alternative design scenarios.” It tends to require a more prescriptive approach: “Here are things that you can do to adapt your residence or small-scale commercial building: Insulate your roof and walls, upgrade your mechanical systems to all electric, etc.”

In large-scale renovation or reuse projects, where are the opportunities with embodied carbon?
Richard Renaud, AIA: With the mountain buildings, the envelope is a good target. Many of the curtain walls in early modern buildings had very little concern for thermal performance—keeping the view and light was their primary objective. Operationally, how can we improve the curtain wall? And when is it too far gone to be able to be improved? This all comes back to improving performance and minimizing the future use of carbon. The curtain wall was made out of aluminum and glass, two materials that use a lot of carbon to make them. What can we do to save that carbon? Not replacing it becomes very important. The Professional Plaza Building [shown above, in Detroit, which Quinn Evans renovated] was a nice midcentury building that actually had a thermally insulated curtain wall. The owner came to us and said: “From a monetary basis, I want to retain this curtain wall. What can we do to improve its performance?” In his eyes, it’s money; in our eyes, it’s carbon. The owner wanted to save money, he wanted to make the building more efficient. He wanted to reuse as many materials as possible in its redevelopment, which inherently is what we intend to do, too.

Are there ways for architects to get owners thinking more about carbon?
Renaud: The mountain is actually a lot easier, because the owners are going to come to architects. The problem, as Carl said, is with the “carpet.” You have thousands of owners, and most are not going to hire an architect.

Do we write off the carpet too quickly as not worth saving?
Renaud: Yes. If you come in [to a carpet building] and you have four walls and a roof, even in poor condition, if you can save anything, it’s a plus. We’ve got to stop looking at it only as saving money, and start saying: “How much carbon do we have here, and how is reuse going to save it?”

Elefante: We can’t do this without systemic change. I constantly find myself reminded of the founding of AIA 160 years ago. What was happening then was the adoption of what we now call Building and Life Safety Codes. What we’re faced with today is really similar. Back then, the systemic change was recognizing that it was more important to have all buildings fireproof so that we didn’t have a disaster every time somebody dropped a candle. We need systemic change here as well, and the basis for the change is there. City after city is beginning to develop plans for carbon reduction. There is no way to get to the reductions that are needed without addressing carbon in the building stock—both operational and embodied carbon. Even if you find no value in an existing building other than to keep its basic structure, that saves so much embodied carbon. How do we really start to think about our buildings as carbon sinks, as ways to sequester carbon?

Is sequestering the carbon that is already in the built environment critical to achieving zero?
Elefante: Yes. We just can’t throw these buildings out. We’ve got to work with the buildings that we have and continue to make them valuable. If we’re looking for quick reductions in carbon, the place that we have to look first is embodied carbon. If you start with scenarios like renovating existing buildings, then you are instantly saving carbon. This market change is happening very quickly. From my own perspective of being an official old guy and having been around for the rise of sustainability and green building, there’s an awful lot of people around that say, “Architects really missed the boat on the green building switch, so others took it on.” This is going to happen even more quickly, and it’s imperative that architects wake up and make this transition from being carbon polluters to being carbon sequester-ers. It will be either the saving or the demise of our profession.