Author: abrahamwien18

7 Factors Driving High Performance Buildings

8/30/13

View the original article here

In a world faced with an evolving array of challenges – economic, environmental, security, and social – the bar for building performance is continuing to rise. High performance buildings go beyond the basic requirements of codes and standards to significantly reduce energy consumption, increase use of renewables, have a minimal environmental impact in material use and site selection, enhance human comfort and safety, and improve occupant productivity.

High performance buildings also create the flexibility necessary for open-plan space and respond efficiently to inevitable changes within the building. High performance buildings achieve these performance objectives in a cost-effective manner throughout the lifetime of a facility.

According to Legrand, a provider of infrastructure solutions, a host of factors are driving a paradigm shift in performance expectations within the built environment. Key factors include:

  1. Market and Economic Forces: In recent years, institutional investors and building owners have sought out energy and other efficiencies in building portfolios to reduce risk and improve asset value.
  2. Homeland Security & Natural Disasters: Today’s buildings are faced with a more diverse and rising number of man-made and natural threats, ranging from terrorism to flooding and earthquakes.
  3. Energy Security and Climate Change: In the United States, buildings consume nearly 40% of all national energy and significant amounts of natural resource, putting the sector under increasing pressure to become more energy and resource efficient.
  4. Social Equity: The aging of the American population and the landmark Americans with Disabilities Act are driving building owners and managers to redefine and redirect the traditional understanding of design for accessibility.
  5. Changes in Building Design, Delivery, and Management: New information management and modeling tools, such as Building Information Modeling (BIM), have created the ability to simulate and manage building performance across a wide array of attributes.
  6. Information Technology: The Internet, with all its associated devices and applications, is changing the functioning of the building and the activities of its occupants. This creates demand for new levels of embedded intelligence, communications, and interoperability of systems and products.
  7. Codes and Standards: A new generation of building codes and standards are a reflection of new market expectations, and they have become a driving force for higher levels of building performance.

The federal government formally defined high performance buildings in the Energy Independence and Security Act of 2007, but in practice, it is building owners and managers and the design teams they commission who define and embody high performance on a day-to-day basis.

Solar Roadways ‘Could Power America’

May 27, 2014 by Leon Walker
View the original article here

An Idaho couple is using the Internet to fund their Solar Roadways project that would convert roads and highways into photovoltaic arrays, which they say could produce enough energy to power the entire US.

Scott and Julie Brusaw are using crowd-funding website Indiegogo in an attempt to raise $1 million to manufacture the product commercially, reports SingularityHub.

The product (artist’s impression pictured) previously received two rounds of funding from the Federal Highways Administration, buy that contract is set to expire in July.

Solar Roadways is a modular paving system of hexagonal solar panels that can withstand up to 250,000 pounds of pressure. These panels can be installed on roads, parking lots, driveways, sidewalks and bike paths, and the panels contain LEDs that road managers can light up to display lane lines and other road features that would traditionally be painted.
The surface of the panels, which are about the size of a car tire, is covered with hexagonal bumps that SingularityHub reports offer better traction than asphalt.

According to the crowd-funding website, panels pay for themselves primarily through the generation of electricity, which can power homes and businesses connected via driveways and parking lots. A nationwide system could produce more renewable energy than a country uses as a whole, the website says.

The roadways also have the ability to treat stormwater. Currently, over half of the pollution in US waterways comes from stormwater, according to Solar Roadways. The company has created stormwater treatment and storage areas in the pipelines used for housing cable.

Earlier this month, the Energy Department announced plans to use crowdsourcing in an attempt to spur innovation in the US solar marketplace.

‘Green’ Federal Facilities Save $42M

Environmental Leader, 05/27/2014

More than 400 federal facilities achieved $42 million in cost savings and environmental benefits last year as part of the Federal Green Challenge (FGC).

A national effort under the EPA’s Sustainable Materials Management Program, the FGC allows federal offices or facilities to pledge participation in reducing the federal government’s environmental impact and recognizes outstanding efforts that go beyond regulatory compliance and strive for annual improvements in selected target areas (waste, electronics, purchasing, water, energy and/or transportation).

Within these areas, additional accomplishments by participants included: diverting more than 500,000 tons of municipal solid waste and construction and demolition waste from landfills, and reducing fleet distance traveled by 16.5 million miles.

Data collected from the challenge show that FGC participants sent 1,765 tons of end-of-life electronics to third-party certified recyclers, minimizing environmental impacts — including water and energy use, releases to air and water, greenhouse gas emissions, and land use impacts.

The US General Services Administration’s new standards for its federal buildings, published in March, focuses more on outcomes, or performance, and less on technology.

The Facilities Standards for the Public Buildings Service, also known as the P100, is a mandatory standard that outlines how facilities will be managed, designed and built to achieve higher performance levels and save energy in the 9,200 buildings the GSA owns and leases across the country. The P100 applies to all new construction projects including additions to existing facilities.

Incentives Aim to Green Up New York, Reduce Operating Costs for Building Owners

By Joshua Ayers, Senior Editor, 5/20/2014
View the original article here

New York—A recent study found that 75 percent of greenhouse gasses in New York City are being generated by buildings, a majority of which are multifamily residential buildings. The alarming figures have prompted an assortment of companies and organizations, ranging from major utility companies to the mayor’s office, to develop programs that incentivize green upgrades in an effort to entice multifamily building owners to curb emissions.

A panel of industry experts explored the fiscal perks of these programs at FirstService Residential’s Third Annual Green Expo & Symposium May 15 in New York, stressing the importance of participating in the programs before they are no longer available.

“What’s packaged inside of this is not only trying to operate your building more efficiently, cleaner, greener, but also as a major opportunity to save money,” said FirstService Residential President Dan Wurtzel as he opened up the discussion. “Ultimately if at the end of the day that’s where we end up then we’re all in a better place. We save money, we’re contributing to a greener environment and probably our property values are going to go up because of the reputation of the building. So it’s a win-win all the way around.”

One of the largest incentive programs currently available to New York building owners is NYSERDA’s flagship program, the Multifamily Performance Program (MPP), which allots building owners $500 to $1000 per unit to help reduce energy usage by 15 percent. To qualify, owners must work with one of about 90 NYSERDA-approved partners, which include engineering firms, energy consultants and non-profit organizations. That chosen partner then assess and recommend improvements that will help them achieve the reduction. Owners become eligible for an additional $300 per-unit bonus if they are able to meet the criteria.

“The good news is that the way that all this is calculated and the way that electricity rates work, 15 percent energy reduction is about a 15 percent cost reduction,” says Michael Colgrove, director of NYSERDA’s New York City office, who directly oversees the multifamily programs. “If you know how much you spend annually on energy usage, you take 15 percent off of that, and that’s about what the program [can do to] assist you.”

Colgrove said that most buildings in the program end up reducing usage by 20 to 25 percent and that there have been some buildings that have cut energy use by as much as 40 percent. In addition to the initial incentives, owners can qualify for an additional $300 per unit if they are able to reduce usage.

But the panelists stressed the importance of taking advantage of these programs, as most of them do have set term limits.

For example, Con Edison has created a new program aimed at curbing peak summer demand energy uses. The program, called the Demand Management Program, provides a certain amount of money for every kilowatt of energy saved via a variety of methods such as lighting upgrades, While owners can potentially save thousands of dollars through these incentives, the program will end promptly in June 2016.

Con Edison also has other programs that reward energy reduction such as the four-year Commercial and Industrial Program, which features components that provides rebates for energy efficient equipment and other incentives that can help fund up to 50 percent of a green capital improvement project.

“Some programs have quadrupled the amount of programs and funding available,” said panelist John Skipper, business development for Energy Efficiency & demand response, Con Edison

While these incentive programs allow for building owners to save thousands of dollars in operating costs and give buildings a greener footprint, proper research in rare cases can lead to an additional source of income.

Panelist William C. Ragals, Jr., board president of The Strand Condominium in Manhattan says his board took advantage of now-expired NYSERDA and Con Edison oil-to-gas conversion incentives to help fund the installation of a Combined Heat and Power (CHP) that has allows the building to produce energy at below Con Edison rates.

“With the money that they gave us and the efficiencies that we received in operating expenses by switching from oil to gas, the balance of our out-of-pocket was recovered by us in about five months,” Ragals said.

Despite all of the available programs, qualifying for incentives does not come without a set of challenges. Ragals says that researching the program and educating board members or property managers is the first step to addressing these challenges.

“I had to educate my board and that is something you have to face,” he says.

Another key step to reeling in incentive money is to identify what upgrades need to made and which ones will have the best effect on operating costs.

This can be determined several ways. One way is to utilize information collected through annual benchmarking reports (a requirement of Local Law 84) to identify how much energy a building uses and how that figure compares to other similar buildings in order to determine whether an upgrade is warranted. The second involves conducting an Energy Efficiency Report, something that is already required every 10 years for larger building thanks in part to Greener, Greater Buildings Plan efforts, specifically Local Law 87, which that mandates such an inspection for “covered buildings” with 50,000 or more gross square feet.

“Basically you have a qualified contractor come in and analyze the system that’s in your building and tell you where you can save energy,” said Jenna Tatum, NYC Carbon Challenge Director, New York City Mayor’s Office of Long-Term Planning and Sustainability.

Tatum says that the building owners can get credit for the audits up to four years in advance of the 10 year deadline, and that while the audit does cost money, there are no requirements necessary to commit to any projects.
Colgrove clarified, however, that work has to already have started before NYSERDA incentives will be paid out.
“NYSERDA won’t actually give you an incentive until you’ve installed at least 50 percent of that work,” he said, adding that “NYSERDA’s MPP program has a clause in it that says ‘we will recognize any work that a building has done up to a year of applying to the program,’ and that can qualify toward your 15 percent target.”

Top 25 Cities with Most ENERGY STAR Buildings

April 10, 2014
View the original article here

The EPA announced the sixth annual list of the top 25 U.S. metropolitan areas with the most ENERGY STAR certified buildings. The cities on this list demonstrate the economic and environmental benefits achieved by facility owners and managers when they apply a proven approach to energy efficiency to their buildings.

The Top 10 cities on the list are: Los Angeles; Washington, D.C.; Atlanta; New York; San Francisco; Chicago; Dallas; Denver; Philadelphia; and Houston.

“Not only are the ENERGY STAR’s top 25 cities saving money on energy costs and increasing energy efficiency, but they are promoting public health by decreasing greenhouse gas emissions from commercial buildings,” said Administrator Gina McCarthy. “Every city has an important role to play in reducing emissions and carbon pollution, and increasing energy efficiency to combat the impacts of our changing climate.”

Energy use in commercial buildings accounts for 17 percent of U.S. greenhouse gas emissions at a cost of more than $100 billion per year. ENERGY SSTAR-certified office buildings cost $0.50 less per square foot to operate than average office buildings, and use nearly two times less energy per square foot than average office buildings.

The data also show that more than 23,000 buildings across America earned this certification by the end of 2013. These buildings saved more than $3.1 billion on utility bills and prevented greenhouse gas emissions equal to the annual electricity use from 2.2 million homes.

First released in 2008, the list of cities with the most ENERGY STAR-certified buildings continues to demonstrate how cities across America are embracing energy efficiency as a simple and effective way to save money and prevent pollution. Los Angeles has remained the top city since 2008 while Washington, D.C. continues to hold onto second place for the fifth consecutive year. Atlanta moved up from the number five to number three. For the first time, Philadelphia entered the top 10, ranking ninth.

Commercial buildings that earn EPA’s ENERGY STAR must perform in the top 25 percent of similar buildings nationwide and must be independently verified by a licensed professional engineer or a registered architect. These certified buildings use an average of 35 percent less energy and are responsible for 35 percent less carbon dioxide emissions than typical buildings. Many types of commercial buildings can earn the title, including office buildings, K-12 schools, hotels and retail stores.

Products, homes and buildings that earn the label prevent greenhouse gas emissions by meeting strict energy efficiency requirements set by the U.S. EPA. In 2013 alone, Americans saved an estimated $30 billion on their utility bills and prevented greenhouse gas emissions equal to the annual electricity use of more than 38 million homes with the help of ENERGY STAR. The label can now be found on products in more than 70 different categories, with more than 4.5 billion sold. More than 1.5 million new homes and 23,000 commercial buildings and industrial plants have earned the label.

The 2014 Energy Star Top Cities are:
1. Los Angeles
2. Washington, DC
3. Atlanta
4. New York
5. San Francisco
6. Chicago
7. Dallas-Fort Worth
8. Denver
9. Philadelphia
10. Houston
11. Charlotte
12. Phoenix
13. Boston
14. Seattle
15. San Diego
16. Minneapolis-St. Paul
17. Sacramento
18. Miami
19. Cincinnati
20. San Jose
21. Columbus, Ohio
22. Riverside, Calif.
23. Detroit
24. Portland, Ore.
25. Louisville

More on the 2013 top cities: www.energystar.gov/topcities

More on Energy Star certified buildings: www.energystar.gov/buildinglist

USGBC: Top 10 States for LEED Green Building

By Gail Kalinoski, Contributing Editor
February 27, 2014
View original article here

Built along the Chicago River by Hines, 300 North LaSalle, a 57-story, 1.3 million-square-foot Class A office tower in Chicago was designed to be extremely energy efficient with a façade of articulated glass and stainless steel that maximizes daylight and minimizes solar gain. It has a green roof and water and energy conservation systems. Tenants and property managers recycle paper, glass, aluminum and plastic. The tower has earned Platinum and Gold LEED certifications from the U.S. Green Building Council – Platinum for Existing Buildings and Gold for its Core & Shell.

Owned by KBS REIT II and managed by Hines, it is one of two Hines-related properties highlighted by the USGBC in its ranking of the Top 10 States for LEED. The other Hines building cited by the USGBC is Fifty South Sixth, a 29-story, Class A office tower in Minneapolis. The 698,600-square-foot building developed and owned by Hines has LEED Gold certification. Green features include energy efficient lighting with reduced mercury content; use of environmentally safe cleaning products and practices; water use reduction and a comprehensive recycling program.

At both buildings, Hines offers its GREEN OFFICE for Tenants program, which assists the tenants in ways to reduce their carbon footprints.

“We are very pleased that 300 North LaSalle and Fifty South Sixth are being highlighted in the USGBC’s Top 10 States for LEED,” Gary Holtzer, global sustainability officer at the privately-owned Houston-based firm, told Commercial Property Executive. “We have partnered with the USGBC since its founding to identify best operating practices and cutting-edge techniques in order to stay in the forefront of building operations.”

“We have continually sought new ways to maximize the efficiency of our buildings and are leading the industry with new building strategies and putting technologies into practice in an economically viable way, which is evidenced by our La Jolla Commons project (in San Diego) with LPL Financial – the largest net-zero energy building developed for lease in the U.S.,” Holtzer added.

Topping the USGBC list was Illinois with 171 projects certified in 2013 for a total of 29,415,284 square feet and a per-capita square footage of 2.29. Maryland followed with 119 certified projects in 2013 for a total of 12,696,429 square feet for a per-capita square footage of 2.20. Virginia placed third with 160 properties and 16,868,693 square feet receiving LEED certifications in 2013 for a per-capital square footage of 2.11. Massachusetts came in fourth with 101 projects certified in 2013 and 13,684,430 square feet for a per-capita square footage of 2.09. Rounding out the top 5 were New York and California, which tied. New York had 259 projects certified in 2013 and 37,839,395 square feet for a per-capita square footage of 1.95. California had 595 projects certified in 2013 and 72,729476 square feet for a per-capita square footage of 1.95.

Oregon placed sixth, followed by North Carolina, Colorado, Hawaii and Minnesota. Since Washington, D.C., is a federal district it was not ranked but it had 106 projects certified in 2013 and 19,524,216 square feet for a per-capita square footage of 32.45.

USGBC calculates the list using per-capita figures as a measure of the human element of the green building, allowing for a fair comparison among states with population differences and number of overall buildings, the council said. It is based on 2010 U.S. Census data and includes commercial and institutional green building projects that were certified throughout 2013.

Making the list for the first time were Oregon, which certified 47 projects representing 1.83 square feet per person; North Carolina with 133 projects representing1.80 square feet per resident; Hawaii with17 projects and 1.71 square feet per resident and Minnesota with 51 projects certified or 1.55 square feet per resident.

“The list of the Top 10 States for LEED is a continuing indicator of the widespread recognition of our national imperative to create healthier, high-performing buildings that are better for the environment as well as the people who use them every day,” Rick Fedrizzi, president, CEO & founding chair of USGBC, said in a news release.

Skanska USA, another commercial real estate firm focused on sustainable building practices, had several properties included in the USGBC report. One is 1776 Wilson Boulevard, a 139,593-square-foot office and retail building that is the first LEED Platinum property in Arlington, Va. It has a green roof, solar panel, fitness center, bicycle storage and is located within walking distance of two Metro train stations.

The second property noted by USGBC is Skanska USA’s own office building in Rockville, Md. The 13,000-square-foot office building at 700 King Farm Boulevard achieved LEED Gold certification for the interior space. DCS Design, the McLean, Va.-based architecture and design firm responsible for the interior said on its website that glass walls, partitions, workstation panels and doors were used throughout the office to bring in natural light. The firm used salvaged materials and recycled finishes, fixtures and furniture.

The USGBC list included other notable green projects such as Aulani, A Disney Resort & Spa in Kapolei, Hawaii, LEED Silver; M&T Bank Stadium in Baltimore, LEED Gold; Barclays Center in Brooklyn, N.Y., LEED Silver. The Carlton College Weitz Center for Creativity in Northfield, Minn., received LEED Gold, the college’s third project to earn LEED certification.

New Phase I Environmental Assessment Standard Just the Starting Point for Managing the Purchase of Contaminated Property

February 25, 2014
Peter R. Duchesneau
Partner, Manatt, Phelps & Phillips, LLP

View the original article here

On December 30, 2013, the U.S. Environmental Protection Agency (“EPA”) adopted ASTM E1527-13, an updated Phase I environmental assessment standard for performing all appropriate inquiries to establish landowner liability protections under the U.S. Comprehensive Environmental Response, Compensation and Liability Act (“CERCLA”). This new Phase I protocol clarifies the previous standard for all appropriate inquiries, which is an important first step, but not the only one for establishing landowner liability protections. With the adoption of ASTM E1527-13, buyers of potentially contaminated property should take the opportunity to revisit the other requirements and scope of landowner liability protections. By doing so, prospective purchasers will not only better their chances of effectively establishing such protections, but can also better manage risks that may fall beyond them.

CERCLA Landowner Liability Protections
Under CERCLA, existing property owners are strictly liable for the cleanup of contamination of their property, including new owners who acquire the property years after the contamination occurred. To promote the development of contaminated property, on January 11, 2002, President Bush signed the Small Business Liability Relief and Brownfields Revitalization Act, Public Law 107–118 (‘‘the Brownfields Amendments’’), which amended and clarified CERCLA by establishing three forms of landowner liability protections for new owners of contaminated property: the bona fide prospective purchaser (“BFPP”), the contiguous property owner, and the innocent landowner.

To qualify for these CERCLA landowner liability protections, the Brownfields Amendments provide that parties purchasing potentially contaminated property must comply with a number of requirements, including undertaking ‘‘all appropriate inquiries’’ into the ownership and use of the property prior to purchase. On November 1, 2005, the EPA promulgated regulations that set standards and practices for all appropriate inquiries and authorized the use of ASTM E1527-05 to comply with the rule.

ASTM E1527-13 Phase I Standard
In November 2013, ASTM International published ASTM E1527-13, “Standard Practice for Environmental Site Assessments: Phase I Environmental Site Assessment Process,” replacing ASTM E1527-05. In many respects, ASTM E1527-13 is the same as its predecessor. However, the new standard contains some important revisions, including a clarification that all appropriate inquires must include an assessment of vapor migration and vapor releases on, at, in or to the subject property. Other revisions to the standard include updated definitions of “Recognized Environmental Conditions” (“REC”), “Historical Recognized Environmental Conditions,” and “de minimis conditions,” as well as the addition of a new form of REC, “Controlled Recognized Environmental Conditions.” ASTM E1527-13 also contains additional requirements pertaining to regulatory agency file and records review and clarification of the “User” obligations.

A New Property Owner’s Post-Acquisition Obligations
For the most part, the requirements to establish the three protections are similar, including the necessity of performing all appropriate inquiries prior to purchasing property. While many prospective purchasers diligently attempt to perform all appropriate inquiries, the other requirements can be overlooked, as can the limitations of CERCLA landowner liability protections.

Perhaps of most concern are real property transactions where contamination or other recognized environmental conditions are identified in the course of performing all appropriate inquiries. Despite such knowledge, as a BFPP, the new owner can largely be exempt from CERCLA liability for preexisting contamination. Yet the requirement to establish the BFPP defense does not end with performing all appropriate inquires under ASTM E1527-13 prior to purchase. Buyers also have important obligations after the acquisition of property.

Parties seeking the benefit of the BFPP protections must establish, by a preponderance of evidence, each of the “painstakingly detailed statutory elements,” as one court put it in the course of rejecting a bid to secure the BFPP protections. See U.S. v. Slay, 2013 U.S. Dist. LEXIS 46204, n. 6 (2013). In all, there are eight statutory elements, including that a new property owner must provide all legally required notices with respect to the discovery or release of hazardous substances at the property; exercise appropriate care with respect to the hazardous substances found at the facility by taking reasonable steps to stop any continuing release, prevent threatened future releases and preventing or limiting exposure to previous releases; and provide full cooperation, assistance and access for response actions.

A number of courts have recently declined or otherwise expressed doubt as to BFPP claims due to the claimants’ failures to demonstrate they met their post-acquisition obligations. For instance, in Saline River Properties, LLC v. Johnson Controls, Inc., 823 F. Supp. 2d 670, 686 (E.D. Mich. 2011), the court held that the defendant had failed to demonstrate that it had not impeded performance of a response action when it broke up a concrete slab alleged to have caused hazardous substances beneath the barrier to migrate into additional soils and groundwater. In Voggenthaler v. Maryland Square, 724 F.3d 1050, 1062-1063 (9th Cir. 2013), although the Court of Appeals remanded the issue to the trial court, it expressed skepticism that the party would be able to establish a BFPP defense and show it prevented further harm and limited exposure to preexisting contamination after it demolished a building and took no steps to remove the contaminated soil or limit its spread. Similarly, in PCS Nitrogen v. Ashley II of Charleston, 714 F.3d 161, 180-181 (4th Cir. 2013), the court found that a party’s delay in filling in sumps and not stopping runoff amounted to failure to exercise appropriate care, thwarting its BFPP defense.

Environmental Risks Outside CERCLA Landowner Liability Protections
Even where a party can establish CERCLA landowner liability protections, the scope of such protections warrants careful consideration for buyers of contaminated property. There are a number of environmental risks that fall outside the purview of the CERCLA landowner liability protections. For instance, the protections do not extend to releases of fuel from underground storage tanks, given CERCLA’s petroleum exclusion. Nor do the protections necessarily apply to state cleanup claims or toxic tort actions, with laws varying by state. For example, under the California Land Reuse and Revitalization Act of 2004, an agreement with a state environmental agency must be entered into before the land owner liability protections will attach. Buyers must also be astute of contractual provisions for property acquisitions that may stymy the protections.

Despite the potential limitations of the CERCLA landowner liability protections, ASTM E1527-13 establishes a valuable starting point for buyers to assess potential environmental risks of real property and achieve CERCLA landowner liability protections. However, prospective purchasers need to remember that all appropriate inquiries is only the start and just one element for managing environmental risk when acquiring contaminated property. Other means to manage risk may be necessary, and new property owners should take care not to neglect post-acquisition obligations to achieve landowner liability protections.

Peter R. Duchesneau is a partner in the Los Angeles office of Manatt, Phelps & Phillips, LLP. His practice focuses on environmental law involving litigation, administrative proceedings, regulatory compliance and business transactions. He holds a B.S. degree in Chemical Engineering; is admitted to practice before the U.S. Patent and Trademark Office; and regularly advises clients on corporate and real estate transactions, Brownfields, and environmental due diligence. Mr. Duchesneau can be reached at (310) 312-4209 or [email protected].

This column is part of a series of articles by law firm Manatt, Phelps & Phillips, LLP’s Energy, Environment & Natural Resources practice.

Aquafil, Star Sock to Turn Fishing Nets into Socks

Original article on Environmental Leader 3/19/2013

Nylon polymer manufacturer Aquafil, sock company Star Sock, and the European Centre for Nature Conservation Land & Sea Group have launched an initiative to remove marine litter — in particular used fishing nets — and recycle it into yarn to make carpeting, socks, underwear, swimwear and other textiles.

The Healthy Seas, a Journey from Waste to Wear aims to improve seas’ health and keep recovered fishing nets out of landfills. A joint report by the UN Food and Agriculture Organization and UN Environment Programme says there are about 640,000 tons of abandoned fishing nets in the oceans, accounting for one-tenth of all marine litter.

The three partners say they will recycle the marine waste into Econyl yarn, which will then be used to create new products. In 2011, Aquafil started the Econyl Regeneration System project, which turns nylon waste from products including carpets, clothing and fishing nets into raw material.

The Healthy Seas Initiative will include three main phases; the organizations say they will publish an action plan before the end of April.

The first phase will cover three pilot regions in Europe: the North Sea (Netherlands and Belgium), the Adriatic Sea (Italy, Slovenia and Croatia) and the Mediterranean Sea (Spain). After completing the first phase, the organizations will identify the most efficient practices to use when they expand the initiative.

The second phase will identify effective procedures to discourage abandoning fishing nets at sea. It will also make available, encourage and facilitate responsible handling of fishing nets at the end of their life, allowing their recovery and regeneration into new products. The initiative’s expansion to other areas will be part of this second phase.

During the third phase, the partners will draft proposals that include actions governments can take to encourage marine waste removal and recycling. They will then submit the proposals to lawmakers.

Additionally, the organizations will establish a Healthy Seas Fund, which will support activities that raise awareness about the importance of healthy seas, clean up marine litter and finance other coastal projects.

The Healthy Seas initiative is the latest of several efforts to recycle marine waste into new products. Earlier this month, Ecover and Closed Loop Recycling said they will begin using plastic collected from the seas to create recyclable plastic bottles for the green cleaning product company. In January, carpet tile manufacturer Interface and conservation charity the Zoological Society of London expanded a pilot project that turns discarded fishing nets into recycled material for carpet tiles.

In the fall of 2012, cleaning product maker Method launched a two-in-one hand and dish soap that comes in bottles made from plastic recovered from the ocean, blended with post-consumer recycled plastic.

10 US cities vow to slash emissions from buildings

By ALICIA CHANG, AP Science Writer | January 29, 2014
View the original article here

LOS ANGELES (AP) — Mayors from 10 U.S. cities took aim at their skylines Wednesday, pledging to reduce greenhouse-gas emissions from their buildings.

Businesses and homes are a major source of carbon-dioxide pollution in cities, with most of it coming from the burning of fossil fuels for heating, cooling and lighting.

Many of the participating cities — Atlanta, Boston, Chicago, Denver, Houston, Kansas City, Mo., Los Angeles, Orlando, Fla., Philadelphia and Salt Lake City — already are working toward making their building stock more energy efficient.
Los Angeles last year became the first major city to require new and remodeled homes to sport “cool roofs” that reflect sunlight as part of an effort to save energy and reduce electricity bills.

Boston requires energy audits from building owners. The city, along with Chicago and Philadelphia, passed measures to track how much energy buildings are using as a first step toward boosting their efficiency.

Other places including LA, Atlanta, Denver, Chicago, Houston and Salt Lake City, participate in a voluntary federal program to cut energy waste from commercial and industrial buildings.

Under the new effort, cities will work with the Natural Resources Defense Council (NRDC) and the Institute for Market Transformation, a nonprofit that promotes green building, to continue their progress and further shrink their carbon footprints by targeting existing commercial and apartment buildings.

The groups projected the emission reductions would be equal to taking more than a million cars off the road, and they could save residents and businesses $1 billion annually. The project is funded by ex-New York City Mayor Michael Bloomberg’s foundation and other philanthropic groups, which invested $9 million for three years.

New York City managed to cut its emissions by persuading some landlords to switch from oil to natural gas, Bloomberg said.

Los Angeles Mayor Eric Garcetti said cities can be the matchmaker between building owners and banks that lend money for energy-efficient upgrades. He said greening buildings makes economic sense.

“We look forward to stealing your best ideas,” he told other mayors.

The cities were chosen for their geographic diversity, ambitions and ability to follow through, said project director Laurie Kerr of the NRDC.

The cities will craft their plans in the next several months. Backers acknowledged that some policies may require legislation. It’ll take several years to gauge whether cities met their emissions and savings goals.

Keith Crane, director of the environment, energy and economic development program at the Rand Corp. think tank, called the partnership a good first step. But he doesn’t consider it earth-shaking.

“It’ll have a modest effect on greenhouse gas emissions if everything goes right,” he said.

Right-Size Your Ventilation Needs

Learn how demand control ventilation can reduce energy use

By Jennie Morton
View the original article here

Can ventilation requirements and energy conservation go hand in hand? They can if you implement demand control ventilation (DCV).

There’s no reason to waste energy conditioning air for people who aren’t in your building. Instead of supplying air at fixed rates, DCV automatically adjusts ventilation levels based on real-time occupancy measurements. This strategy allows you to meet code and reduce energy use without sacrificing indoor air quality.

EXHAUST YOUR OPTIONS
The problem with traditional ventilation is that it cannot distinguish between actual vs. projected occupancy. As outlined in ASHRAE 62.1-2013, Ventilation for Acceptable Indoor Air Quality, ventilation rates are calculated using two factors: square footage and peak occupancy.

Since square footage is a constant, any fluctuations on the occupancy side of the equation give rise to energy waste. With travel, sick days, vacation, and inclement weather, your building is rarely at capacity. In fact, human resources data shows an average of 75% of workers will be in attendance at any given time.

Without a way to calculate the actual headcount, your HVAC system operates as if maximum occupancy occurs on a continuous basis. If you can eliminate the excess air supply whenever fewer people are present, however, you have an opportunity to capture energy savings.

To have a responsive, intelligent HVAC system, you need to implement demand control ventilation. This strategy recognizes when a space has fewer people than scheduled and drops ventilation levels accordingly, explains Daniel Nall, senior vice president with Thornton Tomasetti, an engineering firm. Air supply is calculated using verified headcounts rather than occupancy projections. DCV is no different than using occupancy sensors to control lights – both ensure energy is conserved when there’s no activity in a space that justifies its use.

For example, offices need to supply 5 cubic feet per minute (cfm) per person in addition to a baseline of 0.06 cfm per square foot, Nall explains. Unoccupied, a 250-square-foot office needs 15 cfm to meet the ASHRAE standard. With one individual present, this increases to 20 cfm. Using DCV to sense when the room is empty, you can scale back the ventilation from 20 to 15 cfm, a 25% decrease in air supply. These savings are then multiplied across any room that has DCV capability.

If your occupancy variations are known in advance, DCV may be as simple as using a basic schedule in a building management system, says Jules C. Nohra, manager for energy efficiency at SourceOne, an energy consulting and management firm. Those with irregular or unforeseen occupancy fluctuations, however, will require sensors that can determine how many people are present. These include education, retail, conference areas, performance venues, lobbies, and offices with a mobile workforce or flex hours.

Carbon dioxide monitoring is by far the most common way to determine occupancy, says Thomas Lawrence, senior public service associate with the College of Engineering at the University of Georgia. The technology is well-established and straightforward to implement. CO2 isn’t treated as a contaminant that needs to have its levels controlled (a common misconception), but as a representation for the number of bodies in a space.

“Carbon dioxide measurements act as a surrogate for occupancy because humans generate an average volume per hour,” explains Nall. “By calculating the concentration differential between internal CO2 volumes and the outside air, you can estimate the number of people in your building. For example, if your CO2 concentration doubles, then occupancy has doubled.”

Occupancy sensors, such as the infrared ones you pair with lighting controls, can also be used. These are the most effective in individual work spaces and private offices, Lawrence observes. For a zone with multiple workers, however, they don’t offer fine enough measurements to calculate total attendance.

For example, think of an open floor plan that houses 30 people. The occupancy sensor will trip when the first person arrives, but it can’t scan the room an hour later to see if all 30 workers showed up that day. It also can’t detect if 15 of those employees move to another part of the building for a two-hour meeting, leaving the space over-ventilated during that period.

Entertainment venues may be able to use ticket sales to confirm a headcount. Other facilities can derive occupancy by counting cell phone signals present in the facility, Lawrence says. It’s also possible to have IT report the number of active computers, assuming that each device fired up represents a person in the space. If you use an access control system and it can interface with your BAS, each card swipe, keypad entry, or turnstile rotation can count toward occupancy.

INSTALL WITH AN AIR OF CONFIDENCE
Integrating demand control ventilation is heavily influenced by your existing HVAC system, such as whether your ventilation is combined with heating and cooling or is a standalone function.

“For example, adding DCV to a packaged rooftop unit may be as simple as including the CO2 sensor with a controller that has the DCV control logic built into it. Such a system likely serves only one or a few occupied zones, making it simpler to control CO2 levels,” explains Lawrence. “A larger building with central air handling, however, may serve many occupied zones. Determining the proper amount of outdoor air to bring in at the central air handling unit is also complicated by the variable occupancy patterns within the multiple zones.”

Say your VAV system supplies air to a large conference area and a group of private offices. To scale back the ventilation when the conference room is empty means that you risk the possibility of underventilating the offices at the same time. To avoid this scenario, you will need air flow sensors that measure the amount of air going to each space as well as the outside air that’s being drawn through the air handling unit, says Nall.

CO2 sensors are typically installed in the occupied space instead of ductwork because return air is an average of all conditioned spaces rather than an individual area, state ASHRAE members Mike Schell and Dan Inthout in their article Demand Control Ventilation Using CO2. Duct sensors can be used if all ventilated spaces share common occupancy patterns; otherwise, sensors should be wall-mounted.

“Avoid installing in areas near doors, air intakes or exhausts, or open windows,” advise Schell and Inthout. “Because people breathing on the sensor can affect the reading, find a location where it is unlikely that people will be standing in close proximity (2 feet) to the sensor. One sensor should be placed in each zone where occupancy is expected to vary. Sensors can be designed to operate with VAV-based zones or to control larger areas up to 5,000 square feet.”

Switching to DCV will typically require additional building management system points, new setpoints, and new control codes for dampers, Nohra notes. This may include a controller or DDC programming to communicate either directly with the economizer controller or a central control system, specifies the DOE in its 2012 report on demand control ventilation.
You should also make sure outdoor dampers are operable and not stuck in fixed positions, stresses Lawrence. It’s not unusual to find air intakes blocked in a misguided attempt to save energy. There may also be missing equipment, such as economizer controls with modulating air dampers that were specified but never installed.

Once the DCV sequencing has been established, the system requires minimal maintenance. CO2 sensors should be recalibrated periodically as their accuracy will drift over time. Consult your manufacturer guidelines, which may recommend recalibration every five years, annually, or every six months. Lawrence also recommends sensor testing prior to launch in case the product is deficient or was damaged during installation.

A BREEZY SOLUTION
Demand control ventilation isn’t a flashy energy efficiency project, but it consistently generates payback under five years or less. Paybacks can also be achieved more quickly if the system incorporates lighting and electrical outlets (vampire energy) controls. For upfront investments, owners can expect to pay less than $100 for occupancy sensors, Nall estimates. CO2 sensors can cost several hundred dollars per unit, adds Lawrence.

“The installation costs for a DCV project vary significantly depending on building size, existing infrastructure, and control requirements. An owner can expect to pay approximately $1,000 to $2,000 per point on average,” Nohra adds.
Nall was recently involved with a renovation project that incorporated DCV by using occupancy sensors. A series of perimeter offices and those adjacent to an atrium were paired with a dedicated outside air system and variable speed fan coils.

Each 160-square-foot office has a two-position damper. The default setting for an unoccupied office delivers 10 cfm of outside air. Anticipating occupant diversity when the office is in use, the secondary position is configured for three guests at 25 cfm.

“This ensures that we’re providing the minimum ventilation for the maximum expected occupancy,” Nall stresses.
Whenever the system senses the room is unoccupied, it can scale back ventilation to 40% of peak flow. The project cost less than $1,000 per office and since the occupancy sensor controls ambient lighting and power receptacles, the payback is under five years. The DCV capability also meets the LEED credit for increasing ventilation by 30%.

Lawrence also oversaw a DCV project at the University of Georgia. The retrofit converted a single classroom, but has seen great success since its installation. Payback was achieved in less than two years and there are plans to adapt more areas in the future.

“Regardless of the actual design standard, energy savings with a DCV retrofit should focus on a comparison to the existing ventilation patterns, even if they do not match current codes or standards,” emphasizes Lawrence. “If a building is not providing ventilation that meets existing standards, then the primary benefits of DCV are indoor air quality.”

Jennie Morton [email protected] is senior editor of BUILDINGS.