Future Benefits

How urban transformation will be different in the 2020s

Social impact and decarbonization strategies will be the pillars of urban development projects in the coming years
View the original article here


From revamping disused docklands to rejuvenating rundown neighbourhoods, cities are embarking on urban development projects that put health and sustainability at the heart of placemaking.

These mixed-use schemes increasingly focus on implementing features that support wellbeing, champion strong environmental credentials, build communities and promote equality and inclusion.

The redevelopment of the western edge of Dublin city center aims to bring the concept of the 15-minute city to life while Rotterdam’s M4H project will re-green the site surrounding a manufacturing hub, and add sport facilities, housing, hospitality and cultural space.

Such schemes show how thinking around what makes a successful city is shifting, says Jeremy Kelly, Lead Director, Global Cities Research at JLL.

“City governments are looking beyond traditional metrics like GDP and employment growth and are refocusing on harder-to-measure factors relating to liveability, opportunity and experience,” he explains.

“That has implications for real estate because city governments now expect the industry to deliver developments that have a positive social impact.”

Looking beyond the money

Many of today’s schemes draw from major urban projects of the previous decade – such as Hudson Yards in New York City and London’s King’s Cross.

“These were substantial projects that changed the spatial logic of a city, opening up new areas that were increasingly mixed-use, and cutting-edge when it came to responding to the demands of occupiers and well-off residents,” says Kelly.

One big difference is that urban transformation projects of the 2020s will positively impact surrounding communities, in part by addressing challenges to provide affordable housing.

“That’s where the shift is – thinking about the community impact,” says Kelly. “And for developments to boost or retain their value, they’ll need to be part of neighbourhoods that are also regenerating.”

Health is another key focus for today’s projects, tying into trends such wellness in the workplace and more active lifestyles.

Outdoor access, natural light and green areas – long shown to boost mental health – will be critical features for projects, along with easy access to leisure and healthcare amenities.

“Health and wellbeing concepts are foundational to today’s developments, whatever the size of the project,” says Walid Goudiard, Head of Project and Development Services at JLL. “It’s a matter of placemaking and curating the built environment to provide a healthy, positive experience whether in an office or residential setting.”

The McEwan in Edinburgh, for example, is the first European residential scheme to receive a Fitwel 3-start rating for its focus on health and wellbeing through landscaped gardens and neighbourhood amenities.

And there will be more to come. “The pandemic has accelerated that transition toward creating more human and sustainable places,” says Richa Walia, Director, Work Dynamics Research at JLL. “There’s a genuine desire among companies to act responsibly and their first priority is to create human-centric places.”


Sustainability for social good

Environmental concerns will equally guide urban development, as municipalities develop plans to hit net zero targets and more real estate companies report their environmental impact in line with globally recognized standards.

In Paris, the recently completed regeneration of Clichy-Batignolles is designed as an eco-quarter with low-energy building powered from geothermal and solar sources.

Biodiversity, too, will become a key pillar for transformation projects, with city authorities more likely to greenlight schemes with features such as green roofs, areas given over to rewilding and living walls. Many municipalities now restrict the construction practice of soil sealing to improve carbon capture in buildings and boost biodiversity.

What’s more, plans will need to consider retrofitting and repurposing existing buildings instead of embarking on carbon-intensive new builds. Here, technology and digitisation can offer two vital benefits in optimising resources, says Goudiard.

“Firstly, sensor-enabled smart buildings can automate operations for improved efficiency and reduced emissions,” he explains. “Digitizing spaces also helps with tracking how they’re used and then getting the maximum value from them – especially in dense city centers. The concern is how to embed tech solutions in a way that really benefits users.”

Technology could also boost inclusiveness in urban developments through data analytics that align space design with users’ needs – such as enhancing play areas or accessible walkways – or digital services that offer more equitable access to housing and infrastructure. However, with less defined metrics to track than decarbonisation initiatives, inclusion can be a design challenge in many projects.

“There is a lot of work to be done when it comes to creating inclusive spaces,” says Walia. “The elements that make up diversity and inclusion need to be addressed holistically. Companies are trying to understand how a development can truly create social impact.”

Governance is also moving with the times.Whole of place governance, where authorities collaborate closely with the users of a space, will be the critical difference in urban transformation projects of the coming years.

City planning in Paris, for example, now calls for developers to run consultations where local communities provide feedback to design teams and investors on major projects, helping to improve inclusiveness.   

“It’s a more holistic view that’s not just based on the economic output of that district,” says Kelly. “It’s about value creation and improving quality of life for the whole neighborhood.” 


This Toronto Building Is a Model for a Post-Pandemic Office

It’s small, wood, local, efficient, and it has the best bike room in town.

By: Lloyd Alter
View the original article here

Exterior in the evening of the building. Leaside Innovation Centre

The future of the office post-pandemic has been a subject of many posts in the last few years. I have written that we will be living in a hybrid world, with “one foot in the real world, one foot in the virtual, and everything will be flexible and adaptable.” I have suggested that we will see the return of the satellite office in the 15-minute city, in a new hub-and-spoke world. Oh, and the new office buildings will be made from low-carbon materials and nobody is going to want to work in a building without seriously good ventilation.

That’s why I was so intrigued by a new office building proposed for Leaside, in a former industrial area of Toronto that first transitioned to big box stores but now appears to be evolving again. The Leaside Innovation Centre (LIC) is being developed by Charles Goldsmith, designed by Greg Latimer of Studio CANOO, and engineered by David Moses, who is known for his expertise in mass timber construction.

The LIC is a five-minute walk to a new transit line and is surrounded by very expensive homes in desirable residential areas. Basically, it’s what could be ground zero in a Leaside 15-minute city, and may well attract tenants and buyers from the immediate area.

Leaside Innovation Centre

Like many new office buildings, it is built of mass timber. On their website, they list the benefits:

“Mass timber structure is the contemporary equivalent of the beloved industrial warehouse structures that have populated the downtown core for well over a century and are now being repurposed for housing and office space to meet the needs of the 21st century. The mass timber structure (comprised of Cross-Laminated Timber (CLT) floor plates and glulam beams and columns) is substantially lower in its carbon footprint than steel or concrete. The harvesting of renewable forest products to fabricate CLT captures atmospheric carbon helping to mitigate the impact of climate change by storing the embodied carbon in the finished product. In addition, the CLT structure weighs approximately 25% less than a comparable concrete structure reducing the load on the foundation and allowing for reduced concrete use in the foundations.”

Leaside Innovation Centre

What Is CLT?

It’s an acronym for Cross-Laminated Timber, a form of Mass Timber developed in Austria in the 1990s. It’s made of several layers of solid dimension lumber such as 2X4s laid flat and glued together in layers in alternating directions.

CLT can work as a two-way slab, and when you have beams it can often be less expensive to use Nail-Laminated Timber (NLT)—learn about the different LTs here—but Latimer of Studio CANOO tells Treehugger they wanted longer spans matching those in the parking garage for maximum material efficiency. They are also getting their CLT from Element 5, the new supplier in St. Thomas, Ontario (on Treehugger here). Latimer tells Treehugger the finish on their CLT is far better than you can get from NLT or from other suppliers.

There’s still lots of glass! Leaside Innovation Centre

Many office buildings are clad in floor-to-ceiling glass, including mass timber structures where the developers want to show off the beauty of the wood. Unusually, the Leaside Innovation Centre is clad in prefabricated thin brick panels with only a 40% glass-to-wall ratio. They note this allows for much more insulation, reducing the size of the mechanical systems. Latimer tells Treehugger they are looking at triple-glazing the windows as well, but he also notes that it is much easier to furnish the building when the walls are not all glass, and you get much more efficient office layouts.

Building science expert Monte Paulsen has discussed this many times: all-glass buildings are not sustainable even if they are made of wood. In our coverage of the building that Paulsen is criticizing I mentioned those in passing, but it should be taken far more seriously. It is good to see that Latimer and Studio CANOO are doing exactly that.

In my now-archived review of Joseph Allen’s book “Healthy Buildings,” I noted that after the pandemic, tenants and buyers will have lots of options and will be demanding more fresh air, more filters, more air changes.

“The dramatic drop in the demand side of the office market means that tenants will get to be picky, and they are going to go for the buildings that have the best ventilation; developers will be competing to offer the most and cleanest fresh air, the biggest heat recovery ventilators (so that you get lots of air without lots of heating and cooling costs). Any office building that doesn’t offer this stuff is going to be a see-through (a building with no tenants where you can look in one side and see right through to the other) in short order.”

The LIC is doing exactly that: “Mechanical ventilation air supply will be treated with Ultraviolet Germicidal Irradiation (UVGI) and MERV 13 filters to improve indoor air quality, and minimize the amount of airborne contaminants, germs, bacteria and viruses entering the building.”

Latimer explains that the UVGI “explodes the RNA of the virus” and that the system is the same as being done in the fanciest buildings by engineers like ARUP.

Ground Floor Plan. Leaside Innovation Centre

Latimer also tells Treehugger the building is designed with active transportation in mind: There is currently parking for 30 bicycles and it is not stuck down the ramp in the parking garage, but conveniently sits on the ground floor space smack beside the main entrance, along with two showers. That’s very impressive. When I asked if 30 bikes were enough, Latimer noted they are looking at stacking systems to get in more.

Leaside Innovation Centre

It is a tribute to the success of the mass timber industry that small buildings are getting almost too common to cover anymore. As Monte Paulsen demonstrates, people are also getting a lot more critical. It’s like judging the freestyle skiing and snowboarding at the Olympics; you’ve got to really perform, and you have to have more than one trick.

The Leaside Innovation Centre has lots of moves that make it interesting, not just the relatively locally sourced mass timber but the location, the mechanical systems, the cladding, and yes, the bike room. If people are going to get dragged back to the office, this is where they will want to go—close to home, lots of light and fresh well-filtered air, a little biophilic goodness from all the wood, nice amenities, and a glorious bike locker.

It well may be the model of a speculative office project in the post-pandemic world.

The Future of Green Construction Materials

Architects are working with manufacturers to source new materials that improve health, lower costs, and reduce environmental impact.
View the original article here

Building materials—and what’s in them—have been making headlines, and for good reason. As The American Institute of Architects (AIA) raises the bar in response to climate change, architects and design professionals are partnering with clients, contractors, and manufacturers to source materials that meet new environmental goals, part of a larger effort to improve resiliency for the future.

“Historically, architects haven’t asked what goes into building materials,” says Lona Rerick, AIA, an associate principal at ZGF Architects in Portland, Oregon. “We used to just look at aesthetics, performance, and durability. But in the past decade, there’s been a shift to thinking more holistically about sustainable design and better building materials. Now we’re collaborating with clients to improve embodied carbon and health.”

Greener building materials are key to halting climate change. Currently, buildings produce about 40% of the world’s fossil-fuel carbon-dioxide emissions (CO2). In fact, the United States’ building stock produces more than two billion tons of greenhouse gases per year. But that number can be greatly reduced by limiting the embodied carbon of our building materials. Embodied carbon—the CO2 released during material extraction, manufacture, and transport, combined with construction emissions—will be responsible for 74% of all CO2 emissions of new buildings in the next 10 years. And unlike operational carbon, which can be reduced during a building’s lifetime, embodied carbon is locked in as soon as a building is completed and can never be decreased.

The good news? People want change. According to a 2019 survey by the Morgan Stanley Institute for Sustainable Investing, 85% of U.S. investors now express interest in sustainable investing, while half have factored attributes such as the sustainability of a business into their decision to buy. Overall this shows that people want to improve the environmental and social impact of their investments.

To help clients address climate change, architects need to prioritize lowering the embodied carbon of the materials that produce it most. It all starts with a discussion at the outset. “As the design team, we need to have early conversations with clients about the importance of building materials,” says Frances Yang, AIA, the structures and sustainability specialist at Arup in San Francisco. “We need to show them that materials made with little or net zero embodied carbon can be healthier and sometimes cheaper than traditional products. Once clients are on board, contractors and suppliers will support it, and more people will start to realize that they need to come up with greener strategies.”

Architects can minimize embodied carbon by focusing their efforts on the top three worst offenders—concrete, steel, and aluminum, which account for 22% of all embodied CO2.

Prioritize building materials that reduce carbon

The easiest way to reduce embodied carbon is through reuse—not just of existing building materials, but of existing structures, too. For renovation projects, architects can draft efficient designs that make the most of the current footprint. For new projects, architects can bring in salvaged materials sourced from deconstructed buildings. Most of all, when considering new materials, architects can minimize embodied carbon by focusing their efforts on the top three worst offenders—concrete, steel, and aluminum, which account for 22% of all embodied CO2.

Recently, Yang and her colleagues at Arup designed a project for a Bay Area client that required large amounts of concrete. The client was considering purchasing carbon offsets. But the low-carbon-concrete options Yang researched were cheaper than the offsets and could reduce a greater amount of embodied carbon. By choosing concrete made from granulated blast-furnace slag, a byproduct of steel manufacturing, Yang helped the client reduce both the cost of the project and its impact on the environment.

“Teamwork was key,” Yang says. “At the beginning, we worked with the sustainability and engineering teams to share the benefits of slag cement with the client and get them on board, which then persuaded the contractor to also get behind it. The main thing is to start the conversation early and get everyone’s support. In that instance, we were able to help the client cut 12,000 tons of embodied carbon—making everyone really happy with the outcome.”

Manufacturers agree. “Collaboration and communication between architects and concrete suppliers provides many benefits,” says Alana Guzzetta, the laboratory manager at the U.S. Concrete National Research Laboratory in San Jose, California, which has partnered with Yang on projects over the years. “Communication allows architects to be familiar with the cement substitutions and low-carbon-concrete options available in specific markets, which can be helpful in writing specifications. Additionally, when an architectural aesthetic is required for the concrete, the supplier needs to understand those needs to provide the correct mix. Overall, collaboration between designers, contractors, and suppliers is important for implementing the lowest-carbon mixes that meet performance and schedule requirements.”


The 7 steps to adopting better building materials

Creating a plan to build with healthier resources

  1. Establish the goal and scope: Turn values related to health and transparency into clearly written goals and a scope of work, approachable targets, and roles and responsibilities for the project.
  2. Set priorities within budget: Most projects are constrained by cost, and healthier materials are too often abandoned when an all-or-nothing mentality is adopted. Instead, allow projects to achieve incremental improvements. Some improvement is better than none at all.
  3. Develop measurable targets: This step establishes measurable criteria that define success for the project. The target should reinforce the goals and priorities described in the previous steps. Some rating-systems criteria have targets already defined. For example, LEED requires that a minimum of 20 products used on a project meet the disclosure requirements to achieve one point in the Building Product Disclosure and Optimization credit related to healthier materials.
  4. Define methods and metrics: Once targets for healthier materials—which are less toxic for human or environmental health—are established, the next step is to select tools to measure progress. A wide variety of resources are available. Choosing the right one requires matching the information it provides with the goal and scope of the project. For example, if the objective is to avoid certain harmful substances, a list of materials not to be used in the project (and conversely, ones that can be used) should be the primary reference guide.
  5. Outline roles and responsibilities: Determine who will fulfill the essential roles among the primary parties on the project, including the owner, designer or specifier, builder, and operator. Responsibilities include materials research, selection and specification, tracking progress, procurement, and reviewing contractor submissions.
  6. Ongoing review and documentation: During the design phase, tracking gives everyone the ability to see progress toward the project’s targets and also serves as a useful tool to ensure goals will be met.
  7. Develop a materials manual: A manual of building materials is intended to pull together essential information for the facilities operations team. It should address maintenance, warranties, repair, replacement, cleaning, and general care that may be specific to the products installed on the project. Owners who manage their own buildings may wish to use this as the starting point for a continual feedback loop with the building management team. Overall, this can be a great opportunity for architects to develop a closer working relationship with a project manager—a key factor in reducing embodied carbon.

Help clients source better building materials

Another way architects can help reduce embodied carbon is to source materials that have been verified with environmental product declarations (EPDs). Similar to nutrition labels, EPDs are documents that communicate the environmental impact of a product over its entire life cycle, conveying the carbon footprint of materials at a glance. Today, architects can easily check the EPDs of products by using the EC3 Embodied Carbon in Construction Calculator (EC3). Created by the Carbon Leadership Forum, the EC3 is a free, open-access application that helps architects and contrators source sustainable materials in categories like concrete, insulation, gypsum board, and carpet. “Increasingly, we’re writing into our specifications that suppliers must have an EPD if they’re providing a product,” Rerick says. “We need to see that to prove that the builder has lowered the global-warming potential of that product below a certain baseline.”

Recently, Rerick and her colleagues at ZGF Architects were hired by a major tech company to design a new campus in the Pacific Northwest. The tech company is working to become carbon-negative—removing more emissions from the environment than it contributes—and is starting by focusing on construction materials. Using the EC3 tool, ZGF and the other project teams helped the company reduce its carbon footprint while also enriching the EC3 database with additional EPD-approved materials. The size of the project greatly increased the data available to architects everywhere. “The EC3 database is now even more of a game changer, because we have a deeper resource to compare all these different EPDs,” Rerick says. “It enables us to set better targets for lower embodied carbon and then reach them.”

In addition to the EC3 tool, ZGF uses a digital calculator of its own design to further reduce the embodied carbon of projects. Available for free online, the Life Cycle Analysis tool enables architects to enter the ingredients of concrete mixes and quickly see the carbon impact—an innovation that should help improve the industry for years to come. “By creating a database and material-specific baselines to target for products with EPDs, the Carbon Leadership Forum is reducing uncertainty about them,” Rerick says. “This project is helping to accelerate the demand for EPDs among both clients and manufacturers.”

The 5 Key Takeaways of the AIA Materials Pledge

Guidelines for selecting sustainable materials:

  • Support Human Health by preferring products which support and foster life throughout their life cycles and seek to eliminate the use of substances that are hazardous.
  • Support Social Health and Equity by preferring products from manufacturers who secure human rights in their own operations and in their supply chains, and which provide positive impacts for their workers and the communities where they operate.
  • Support Ecosystem Health by preferring products which support and regenerate the natural air, water, and biological cycles of life through thoughtful supply chain management and restorative company practices.
  • Support Climate Health by preferring products which reduce carbon emissions and ultimately sequester more carbon than emitted.
  • Support a Circular Economy by reusing and improving buildings and by designing for resiliency, adaptability, disassembly and reuse aspiring to a zero-waste goal for global construction activities.

Advocate for Local Legislation

Going forward, one of the most important ways architects can increase the use of greener building materials is to advocate for local legislation to lower emissions. In 2019, New York City passed the Climate Mobilization Act, which set emissions caps for buildings, with the goal of reducing output levels 40% by 2030. Nearly 70% of New York City’s emissions come from buildings. As part of the legislation, owners of structures 25,000 square feet or larger must reduce emissions or pay a substantial fine, an initiative that’s sparking massive change.

Todd Kimmel, the New York City architectural manager for insulation manufacturer Rockwool and a Certified Passive House Designer, is working with architects to design green projects that include large-scale passive buildings such as the House at Cornell Tech Campus and Sendero Verde, a three-building, 752,000-square-foot complex in East Harlem that will be a model of low-energy construction. In the past, Kimmel focused on passive design and reducing operational carbon, figuring out how projects can utilize Rockwool insulation, a stone wool that retains heat while minimizing negative health impacts. (Unlike rigid or spray-foam insulation, mineral wool has no plastics that can be released into the air during installation or a fire.) But lately, thanks in part to the city’s Climate Mobilization Act, Kimmel has seen an increase in the number of architects working with contractors and manufacturers to source materials made with less embodied carbon—a trend he attributes to spillover from legislation that addresses operational carbon.

“Architects used to consider materials primarily from a performance standpoint,” Kimmel says. “Now we’re seeing clients invest in greener building materials and operations that exceed the code requirements, because they need to build for the future, to ensure they don’t get hit with penalties. As a result, that way of designing, which creates a healthier environment anyway, is becoming the new norm.”

Build Consensus

The key to building with more sustainable materials is to create consensus, from clients to contractors to manufacturers. Change isn’t easy. For manufacturers in particular, research and development can be costly and time-consuming. But innovation is leading to better options, including wooden materials that capture carbon and concrete materials that sequester it. In turn, these materials are becoming more available, giving architects an extraordinary opportunity for change.

“Manufacturing today requires investing in innovation,” says Cassandra Mellon, the director of architectural sales at Rockwool. “We’re a net carbon-negative company, and want to lower the embodied carbon of stone wool even more, because we believe that’s important. Part of what helped inspire us were initiatives like the AIA materials pledge, which showed that this movement was gaining momentum. If architects ask about things, we listen. Ultimately, the materials pledge creates the foundation for a collaborative approach between architects and manufacturers as we all strive for sustainable materials, and I think we’re going to see more of these types of products across the industry in the future.”

The Blueprint for Better campaign is a call to action. AIA is asking architects, design professionals, civic leaders, and the public in every community to join our efforts. Help us transform the day-to-day practice of architecture to achieve a zero-carbon, resilient, healthy, just, and equitable built environment.

Six Sustainable Building Materials to Look for in 2021

As contractors begin to plan future projects, be on the lookout for these seven sustainable building materials in 2021 and beyond
View the original article here

With society becoming increasingly environmentally conscious, more and more project owners are looking for sustainable building materials to include in their properties. Not only do eco-friendly buildings substantially increase the resale value of a property in a forward-thinking market, but they can help save on utility and maintenance costs as well.

As contractors begin to plan future projects, be on the lookout for these six sustainable building materials in 2021 and beyond.

1. Composite Roofing Shingles

When people think of sustainability, they often think about materials that produce their own energy or help eliminate the need for energy. However, one aspect that is often overlooked is materials that are long-lasting.

Continually having to repair, manage, and replace building materials is a major drain on resources. As such, common roof tile types like asphalt shingles and wood shakes that frequently raise, crack, and fade can become energy pits not only from the perspective of allowing air and moisture to be transferred into and out of the house, but simply because they require so much attention to maintain.

A better alternative would be composite roofing shingles that stay true to the natural aspect of traditional materials while requiring a fraction of the maintenance resources.

2. Smart Glass Windows

A major trend in sustainability in recent years has been the use of large windows to allow more natural light flow and reduce the need for electric light consumption.

While the merits of this building practice cannot be understated, the benefits can be compounded by using smart glass as the window material of choice. Smart glass is an innovative material that changes its heating properties based on how heat and air conditioning is applied in the house. For example, during the summer months, the glass turns translucent to block any heating wavelengths that may require your air conditioning to work overtime while in the winter, the glass becomes transparent to allow the sunlight to aid in heating efforts. 

3. Bamboo Floors

If you are looking for a very bold option for sustainable living, consider using bamboo flooring. While you may not want to take the step of flooring your entire house in bamboo, it makes for a great option for add-ons, antechambers, and mudrooms.

Bamboo has a strikingly similar appearance to traditional wood while having a harvest cycle of a mere three years, compared to roughly 25 years for a normal tree. By choosing bamboo, you can slow the rate of deforestation by giving trees a chance to grow back.

4. Insulated Concrete Framing

Not only does framing help determine what kind of renovations your home can withstand, but it is a fundamental element in controlling heating and cooling costs.

While prefabricated wood panels will come with small cracks and crevices that allow for the transfer of air and moisture into and out of your home, those using an ICF construction (insulated concrete forms) will provide an airtight barrier that prevents unwanted energy transfers while also providing elite thermal mass to help maintain a consistent interior temperature.

5. Solar Panels

The inclusion of solar panels on the roof and in the yard is increasing in prevalence as technology improves and designs become more aesthetically pleasing. Both solar panel tiles and mounted structures are effective ways to reduce a home’s dependence on nonrenewable energy.

6. Eco-Friendly Insulation

Any type of insulation will theoretically be eco-friendly if it sufficiently cuts down on energy used for heating and cooling. However, some of this saving is negated if batts, fillers, and/or sprays used for insulation are not sustainably sourced or use toxic chemicals to help in binding and fire resistance.

As such, an increasingly popular alternative is hemp insulation. This sustainable product of up to 92% natural hemp maintains all of the same insulative properties of more traditional fiberglass or cellulose. In fact, with its ability to be compressed, hemp can even provide superior insulation for homes that are willing to pay a little extra.

Conclusion

The trend of eco-friendly homes is only set to strengthen in 2021 and beyond. Therefore, if you are in the market for a home, or are considering a renovation, take a look at one of the six sustainable listed above for some environmentally-friendly inspiration.

Matt Lee is the owner of the Innovative Building Materials blog and a content writer for the building materials industry. He is focused on helping fellow homeowners, contractors, and architects discover materials and methods of construction that save money, improve energy efficiency, and increase property value.

How To Make Sustainable Practices Profitable

Written By: Benjamin Laker
View the original article here

For decades, the idea that sustainable business practices could lead to profitability has been dismissed. However, with increased pressure from stakeholders and government legislation in recent years, companies are compelled to find ways to reduce their environmental impact while maintaining economic competitiveness. Right now, sustainability is quite rightly top of the agenda, amid the backdrop of the 2021 United Nations Climate Change Conference, more commonly referred to as COP26.

Most people don’t realize that waste is a resource with an economic value and recycling can be a profitable practice say experts.

The environmental impact of organizations and the states they reside in are scrutinized more strongly than ever, ensuring customers and employees do not compromise the ability of future generations to meet their own needs and consequently design a world without waste. At present, nearly 65% of greenhouse gas emissions arise just from handling materials’ production, transportation, and disposal. But a circular economy may significantly reduce 90% of the emissions, thus departing from a linear economy to one that builds circularity into products from the outset is paramount. 

ReCyrcle specializes in this area. Designed to support a waste-free world aligned with the “shared blueprint for peace and prosperity” from the UN Sustainable Development Goals, the innovative tech startup offers a revolutionary recycling system that follows a circular economy approach. “We want to prevent and reduce the waste accumulation of recyclable materials in landfills and change society’s mindset towards waste,” Samreen Nurullah, cofounder and director, told me.

ReCyrcle offers a revolutionary recycling system that follows a circular economy approach

She continued, “collection of the materials directly from the consumers through our app allows us to track the entire process and ensure that these materials do not leak into the environment.” Nurullah’s business partner, Sharaf Rahman, added, “We recycle materials and process them into a usable and manufacturable form reducing the demand and need for virgin materials being extracted from the Earth’s crust.” In doing so, the organization is attempting to digitize the reverse supply chain of waste to make the process more efficient, transparent, and accountable.

ReCyrcle makes a critical assertion – they don’t believe that poor recycling rate isn’t a habit problem but is instead a perception problem. “Most people don’t realize that waste is a resource with an economic value and recycling can be a profitable practice,” observes Rahman. “Our app encourages people to recycle by offering rewards and incentives for recycling in the form of digital tokens.”

The mobile app shows the journey of a plastic bottle and post-consumer packaging waste from the point of collection to being processed into new products so a user can track their recycling habits and buy products made from their recycled packaging waste. This could well be a watershed moment for the future of corporate sustainability, particularly because within countries such as the UK, where the government has delayed plans to implement the Deposit Return Scheme for recycling until late 2024. “We understand the climate emergency and have come up with our private digital deposit return scheme, which can be claimed through our app,” concludes Rahman.

ReCyrcle reprocesses 3D printer waste into recycled filaments to be reused in 3D printing again

Companies like to bucket. Purpose belongs to corporate social responsibility, while the customer belongs to the brand. But here’s the problem with those buckets, concludes Nurullah. Your customers are whole people seeking mission and brand engagement. They expect you to deliver what matters most to them. “Embrace your customer’s mindset, the holistic understanding of their heads and hearts, to deliver on brand and purpose,” recommends Nurullah. Because as companies embrace stakeholder capitalism, they risk subjecting themselves to what besets the nonprofit sector—the tendency to think every stakeholder is a customer, which confuses their strategic aim. Therefore, understanding if your organization is substantially differentiated or even relevant is mission-critical – and the key to entrepreneurial performance, which in the case of ReCyrcle, is impressive. 

That’s not to say they haven’t had help along the way, of course. For example, Rahman explained at length the impact of support that Brunel University’s Bridging the Gap program has had on the organization. “They’ve aided us throughout our journey, and we have recently started collecting 3D printing waste from their design facilities as the curbside municipal recycling programs do not recycle 3D printing waste,” he said. ReCyrcle reprocesses this waste into recycled filaments to be reused in 3D printing again.

This is a key component when thinking about starting a business, says Dr. Marrisa Joseph, Lecturer in Entrepreneurship at Henley Business School. Startups and increasingly established companies have moved away from thinking about what product or service I could offer. Instead, thinking has evolved to what I could create that my potential customer would want, or even better, what they need and how it will impact the planet.

The triple bottom line concept- people, planet, profit- has become an increasingly sought-after value proposition as businesses thrive when they have a greater purpose. That unique nexus is the source of differentiation and the cornerstone of your differentiation strategy. Embracing it requires that you appreciate them as whole people. What matters the most to your customer is what matters the most to you too. Watch out for the zone of indifference, and don’t build your strategy around it.

Every company has attributes and features near and dear to its hearts. Perhaps it’s the origin story, the internal rally cry, or their hometown. Be forewarned. You cannot compete on differentiation by claiming unimportant attributes to your customer. Your customer’s tell-tale shrug is the evidence that what you hold dear can’t deliver a differentiated advantage. And with the case of ReCyrcle, they certainly have it.

How Office Owners are Achieving Net Zero Goals

Both tenants and investors are increasingly focusing on office building’s carbon footprints when considering new deals.

By: Patricia Kirk
View the original article here

As the push to become carbon neutral accelerates globally, there is increasing pressure on office building owners to implement changes to accommodate those goals, including by making their buildings more energy efficient, using sustainable building materials, reducing waste and improving water systems. Some 105 big companies, including Amazon, Microsoft, Unilever, and BlackRock among others, have pledged to be carbon neutral by 2040, with additional firms promising to reduce carbon emissions by 2030. More than 100 countries, including the U.S., have pledged to become carbon neutral by 2050.

“A future where businesses are taxed on their carbon emissions could be close at hand,” said Drew Shula, founder and CEO of The Verdical Group, a Los Angeles-based green-building consulting firm.

California has already passed legislation requiring new and significantly renovated commercial buildings to be carbon neutral by 2030. Additionally, New York City’s Climate Mobilization Act (CMA) includes Local Law 97, which impacts all buildings over 25,000 sq. ft. and calculates carbon intensity for buildings on a per square foot basis, assigning limits to intensity beginning in 2024. Buildings that exceed that limit will be fined $268 per ton of carbon, notes Meadow Hackett, manager for sustainability and KPI services at consulting firm Deloitte.

She notes that many office REITs are planning carbon neutrality strategies to avoid penalties at their New York City properties, and companies are making capital allocation decisions around energy efficiency based on penalty avoidance.

Green building experts acknowledge that a net zero mandate would present a challenge for office building owners/investors, but note that it may not be as daunting as they might perceive.

“Any existing building’s carbon emissions can be reduced, and the first step is to understand its current level of performance,” says Elizabeth Beardsley, senior policy counsel for the U.S. Green Building Council (USGBC). She adds that this requires metering and reviewing utility bills and any other available building performance data that can help identify areas in need of increased operational efficiency and performance.

Once this assessment is completed, existing building owners and operators should develop a strategic action plan aimed at reducing annual building greenhouse gas emissions, Beardsley says. “The action plan can help owners to develop an ‘optimal path’ forward via the evaluation of alternative scenarios to assess opportunities for system upgrades, efficiency improvements, renewable energy generation and/or procurement, and calculate associated costs for each scenario.”

According to Rielle Green, manager of energy & sustainability with CBRE Property Management, which manages 2.7 billion sq. ft. of commercial real estate globally, there is no one-size-fits-all solution for getting to net zero. “Every property is uniquely built with different operating systems and located in different areas with different climates.”

CBRE property managers work with clients to determine which solutions make sense, which may include installing solar panels to reduce carbon dioxide emissions and energy consumption, smart building technology to monitor energy usage, LED lighting or green roofs.

Beardsley adds that owners could lower a building’s carbon footprint by encouraging tenants to commute by walking, biking, public transport, ride-sharing and carpools. This might involve providing a shared bicycle system or membership in a micro-mobility fleet; contributions for public transportation passes; car-sharing memberships; and on-site electric vehicle (EV) charging stations.

Beardsley also notes that conservation and recycling are other important elements for reducing a building’s carbon footprint. “Reducing a building’s water consumption reduces associated energy loads for water provision and wastewater management, as potable water treatment, distribution and use are highly energy-intensive,” she says. 

She offers case studies to illustrate how existing buildings achieved LEED Zero certifications.

The Los Angeles Department of Water & Power, for example, began reducing the footprint of its 17-story, 55-year-old, all-electric John Ferro Building in 2013 with a suite of energy efficiency measures, including lighting retrofits, chiller and fan system upgrades that earned the building’s initial LEED certification in 2015. The following year, the building, which houses LADWP’s 11,000 employees, recertified LEED Gold and in September 2019, it became the first building in California to achieve LEED Net Zero Energy.

Another example is the historic headquarters of Entegrity Partners, a sustainability and energy services company specializing in the implementation of energy conservation and renewable energy projects, which became the first LEED Zero-certified project in the U.S. in 2019 and the second in the world. The building, which achieved LEED Platinum for New Construction, was also awarded Zero Energy certification by the International Living Future Institute.

Entegrity began devising a plan to retrofit its 13,342-sq. ft. Darragh Building to net zero energy in 2016. Initial strategies employed included all-LED lighting, dynamic self-tinting glass, operable windows and doors for natural ventilation in the summertime, and occupancy sensors. The renovation also used locally-sourced materials when possible; preserved daylighting; and installed lighting controls, high-efficiency plumbing fixtures, and native landscaping.

Office buildings with high performing environmental improvements also command a rent premium, according to Beardsley, and trade at higher values than traditional buildings because they offer savings in operational costs. She cites research that indicates tenant were willing to pay $0.75 per sq. ft. for space in a LEED-certified office building compared to a non-LEED certified one.

Additionally, the U.S General Services Administration (GSA) released a 2018 study on the impact of high-performance buildings that quantified their benefits compared to their legacy building counterparts in the GSA’s portfolio. The study found that the upgraded buildings delivered greater cost savings and tenant satisfaction were deemed, therefore, a less risky investment than traditional buildings.

Shula suggests that Blackrock, the world’s largest asset manager, is a great example of this preference for more environmentally sustainable building. The firm committed to net zero for its own operations and is making being carbon neutral the central focus for its more than $8 trillion in assets under management.

Hackett, notes that sustainable swaps and building retrofits are already common in existing buildings to meet carbon neutrality goals. Landlords are deploying more efficient technology, such as occupancy light sensors, LED lighting, and power management software to control HVAC systems.

“Investors are more in tune with how their buildings are performing when it comes to sustainability and ESG today than a decade ago,” adds Green. She notes that sustainability has definitely become a selling point because potential tenants want to know how their buildings are performing in comparison to other buildings in the market.

Meanwhile, “[Institutional] investors are placing ESG, and climate change in particular, central to their investment strategies.”

Hackett notes, for example, that members of Net Zero Asset Owner Alliance, which represent roughly $5 trillion in assets under management, have pledged to transition their investment portfolios to net zero emissions by 2050.

The cost for upgrading existing buildings to achieve net zero depends on many factors, but the building’s age and relative inefficiency are key determinants, Beardsley says. She also notes that the building’s size, shape, and location may limit its capacity to generate on-site renewable energy.

However, “You don’t need to get to zero carbon all at once,” says Shula. “Create a plan to achieve carbon neutrality by 2030, then work backward to today to determine what steps to take first.”

For example, as building equipment reaches end-of-life, it should be replaced with more efficient, all-electric equipment and appliances to enable the reduction of the carbon footprint, he notes.

Getting ground-up buildings to net zero, on the other hand, adds a cost premium of zero to 1 percent when designed and developed as a high-performance building from the start, according to a 2019 USGBC report, The study also noted that operational savings recoup any incremental costs for getting to net zero in a relatively short time, with return on investment for both existing and new office buildings beginning in as little as a year.

Emma Hughes, a LEED project manager with USGBC, notes that with today’s tools, technology and knowledge all new buildings can be designed and constructed to highly efficient standards and achieve net zero energy during the construction process via integration of renewable energy generation and/or procurement.

New recycling techniques set to make electric vehicles greener

By Pratima Desai
View the original article here

A technician unpacks a completely burned Lithium-ion car battery before its dismantling by the German recycling firm Accurec in Krefeld, Germany, November 16, 2017. REUTERS/Wolfgang Rattay
A used Lithium-ion car battery is opened before its dismantling by an employee of the German recycling firm Accurec in Krefeld, Germany, November 16, 2017. Picture taken November 16, 2017. REUTERS/Wolfgang Rattay/File Photo

LONDON, July 1 (Reuters) – Researchers in Britain and the United States have found ways to recycle electric vehicle batteries that can drastically cut costs and carbon emissions, shoring up sustainable supplies for an expected surge in demand.

The techniques, which involve retrieving parts of the battery so they can be reused, would help the auto industry tackle criticism that even though EVs reduce emissions over their lifetime, they start out with a heavy carbon footprint of mined materials.

As national governments and regions race to secure supplies for an expected acceleration in EV demand, the breakthroughs could make valuable supplies of materials such as cobalt and nickel go further. They would also reduce dependence on China and difficult mining jurisdictions.

“We can’t recycle complex products like batteries the way we recycle other metals. Shredding, mixing up the components of a battery and pyrometallurgy destroy value,” Gavin Harper, a research fellow at the government-backed Faraday Institution in Britain, said.

Pyrometallurgy refers to the extraction of metals using high heat in blast furnaces, which analysts say is not economic.

Current recycling methods also rely on shredding the batteries into very small pieces, known as black mass, which is then processed into metals such as cobalt and nickel.

A switch to a practice known as direct recycling, which would preserve components such as the cathode and anode, could drastically reduce energy waste and manufacturing costs.

Researchers from the University of Leicester and the University of Birmingham working on the Faraday Institution’s ReLib project have found a way to use ultrasonic waves to recycle the cathode and anode without shredding and have applied for a patent.

The technology recovers the cathode powder made up of cobalt, nickel and manganese from the aluminium sheet, to which it is glued in the battery manufacture. The anode powder, which would typically be graphite, is separated from the copper sheet.

Andy Abbott, a professor of physical chemistry at the University of Leicester said separation using ultrasonic waves would result in cost savings of 60% compared with the cost of virgin material.

Compared with more conventional technology, based on hydrometallurgy, which uses liquids, such as sulphuric acid and water to extract materials, he said ultrasonic technology can process 100 times more battery material over the same period.

Abbott’s team has separated battery cells manually to test the process, but ReLib is working on a project to use robots to separate batteries and packs more efficiently.

As supplies and scrap levels take time to accrue, Abbott said he expected the technology to initially use scrap from battery manufacturing facilities as the feedstock and the recycled material would be fed back into battery production.

PROFITABLE RECYCLING

In the United States, a government-sponsored project at the Department of Energy called ReCell is in the final stages of demonstrating different, but also promising recycling technologies that refurbish battery cathode to make it into new cathode.

ReCell, headed by Jeff Spangenberger, has studied many different methods, including ultrasonics, but focused on thermal and solvent based methods.

“The U.S. doesn’t make much cathode domestically, so if we use hydrometallurgy or pyrometallurgy we have to send the recycled materials to other countries to be turned into cathode and shipped back to us,” Spangenberger said.

“To make lithium-ion battery recycling profitable, without requiring a disposal fee to consumers, and to encourage growth in the recycling industry, new methods that generate higher profit margins for recyclers need to be developed.”

There are challenges for direct recycling, including continuously evolving chemistries, Spangenberger said. “ReCell is working on separating different cathode chemistries.”

Early electric vehicle battery cells typically used a cathode with equal amounts of nickel, manganese, cobalt or 1-1-1. This has changed in recent years as manufacturers seek to reduce costs and cathode chemistries can be 5-3-2, 6-2-2 or 8-1-1.

The approach at Faraday’s ReLib project is to blend recycled with virgin material to get the required ratios of nickel, manganese and cobalt.

Toyota Might Have Fixed an Underlying Issue With Electric Vehicles

By: Sebastian Toma
View the original article here

One of the problems with electric vehicles now, on top of the range, charging times, charging infrastructure, and the price is battery capacity degradation. The first owner of the vehicle may not be affected by it, but that might not be the case with the second or third owners. But there is hope.  

Toyota’s upcoming EV, prefaced by the bZ4X Concept, is said to retain 90 percent of its initial battery capacity after a decade. At first, this might be something insignificant, but it means that the vehicle should be able to achieve 90 percent of its initial range after ten years of use.  

The news is great if we look at what other automakers claim regarding battery capacity degradation. Most EVs on the market today are claimed to keep up to 80 percent of their initial capacity after eight years or so. Mind you, this is an average of several offerings in the market and should not be taken for granted.   

Why is battery capacity degradation an issue? Well, just like in smartphones or laptops, over time, batteries will not be as good as they were when they were new. Some people change their smartphones or laptops sooner than others, and they never get to experience a battery that lost a significant amount of its initial capacity.  

Replacing the battery of a smartphone or a laptop, for that matter, is technically possible for most, if not all, devices on the market today. The cost of a new battery is not that substantial, and it can bring new life to the device in question.  

However, in the case of electric vehicles of yesteryear, the price of a new battery is in the range of several thousand (euros or dollars), and that can mean half or more than half of their resale value today.  

With older model electric vehicles, owners are facing two issues before purchase, and a third looms in the background. The first two refer to the rather low range when they were new, along with current range after battery degradation, and the third is the cost of a replacement battery that looms in the not-too-distant future.   

This is especially true for the first series of electric vehicles found on the market today, which did not excel when the range was concerned. The third issue I am referring to has to do with the drop in range due to the inevitable degradation of the battery, and the cost of a replacement unit. 

People who buy those vehicles risk getting stuck with an electric vehicle that lost more than half of its initial battery capacity, which makes the range a pressing issue.  

Why do I say getting stuck? Well, those customers bought second-hand electric vehicles to avoid the upfront cost of a new electric automobile. Unfortunately, they might have to pay more than those cars are worth on the used car market to replace their batteries and restore their initial range. 

That might sound like a non-issue, but it is a genuine one, since a used mass-market electric vehicle can cost a couple of thousand dollars (or euros, for that matter), and its replacement battery is almost as expensive as the car.  

Will that make the vehicle worth twice on the used car market? No, it will not. At best, it will be worth more than comparable examples without a replaced battery, but the person who pays for the battery replacement will lose the most money out of the entire thing.  

Fortunately for those seemingly stuck in this situation, there is the option of going to an independent shop that replaces individual battery cells. It is still pricey, as the parts themselves and the knowledge of replacing them safely do not come cheap, but it will bring new life to an old battery at a fraction of the cost of a new battery. Unfortunately, we are far from the moment when these repair possibilities will be as commonplace as conventional engine repair workshops.  

Enter Toyota and its promise to offer a battery that will keep ninety percent of its initial capacity over ten years of use. Even though the Japanese brand’s officials did not state if this applies with frequent quick charge use or how this durability is achieved, it is the start of a movement that will improve electric vehicles for all.  

Eventually, the market will match Toyota’s battery durability target, and it will be commonplace for an electric vehicle to offer 90 percent of its initial range after a decade of use. That will bring a boost in resale value for used electric cars, along with more trust when purchasing a used electric vehicle.  

Fortunately for everyone, battery capacity can be measured at a certified dealer of the brand in question. So, if you are looking for a used electric vehicle, it is wise to call the nearest dealer to inquire about the cost of a battery inspection, along with a pre-purchase inspection just to be on the safe side.   

In the case of Toyota’s plug-in hybrids, the company estimated a 45 to 50 percent decrease in battery capacity after a decade of use, which improved to a 35 to 40 percent decrease for the second generation of the model. The China-only electric versions of the C-HR/IZOA come with even higher durability, which approaches 75 to 80 percent of initial capacity after a decade.  

Once automakers find ways to make batteries more durable, used electric vehicles will get an extended life without high repair costs for their owners. In time, battery repair shops will become more commonplace, and technicians will learn how to safely diagnose and repair (even by replacement) batteries for electric vehicles. 

A Hydrogen-Powered Boat Is Sailing The World. If Not In Cars, Do Boats Make Sense?

Written By: Brad Templeton
View the original article here

The Energy Observer, a French solar/hydrogen/wind boat, visits San Francisco
 
BRAD TEMPLETON

Recently the French originated demonstration boat the Energy Observer stopped for a visit to San Francisco, on its way around the world, having come from the Galapagos and on its way to Hawai`i. The boat uses solar power, hydrogen and battery energy storage and a small amount of high-tech wind.

On board are 200 square meters of solar panels, 1500kg of batteries, tanks for 63kg of hydrogen (good for 1MWH of electricity and another 1MWH of heat) along with electric motors, solid computer-controlled “ocean wing” sails and a desalinator and hydrogen generator to refuel the hydrogen tanks. It travels only 5mph without wind, though can do more — and even regenerate electricity — when the winds get strong enough.

Using renewable wind power to move ships is of course a very ancient technique, and it’s well understood and efficient. Sailing ships have issues when becalmed, and in sailing in narrow channels, but otherwise it’s not clear this ship is a better idea than a sailboat with a small motor system. It is more to demonstrate and play with technologies, and the operators are reluctant to give concrete numbers on costs. That’s unfortunate because any story about energy is vastly reduced in meaning without examination of the economics — even if it’s the future promised economics rather than today’s. Indeed, inattention to economics has led to some really stupid renewable energy projects and even some very stupid laws. Nonetheless, the ship is a cool project, even if it doesn’t deliver information as meaningful as it should.

Hydrogen is a controversial energy storage fuel. It’s not an energy source, but rather a competitor for things like lithium batteries. Many had high hopes for it in cars, but for now it has lost the battle to batteries. Toyota sells the Mirai hydrogen vehicle in very small numbers, but with only a few filling stations available, and the hydrogen coming from fossil fuels, it’s not clear why anybody buys one. Hydrogen’s advantages such as weight and refuel time (when there aren’t any stations) aren’t very powerful in a car compared to its disadvantages — higher cost for fuel and fuel cells, offering less than 50% efficiency, having no refueling infrastructure, non-green sourcing, bulky tanks and much more. Some of those can be fixed, but others are difficult.

This has left us to investigate hydrogen in other areas — large vehicles like trucks and buses, aircraft (where weight is hugely important) and now, ships. There is also research on grid storage, though the low efficiency of conversion is a sticking point. The greatest promise is in aircraft. Hydrogen is actually the best fuel around in terms of energy per kg, but at present storing a kg of hydrogen requires 5 to 12kg of tank, which eliminates a lot of that — but even at that poor ratio it still wins in aircraft.

Hydrogen tanks in hulls use 350 atmospheres of pressure.
 
BRAD TEMPLETON

In a ship, the Energy Observer crew believe that batteries would weigh more than 10 tons. While they don’t say the weight of their H2 system, it probably is more in the range of a ton. Weight is not quite as crucial for ships but that much extra weight comes at a cost. In addition, the EO reduces the waste of fuel cells by making use of the excess heat to provide heat on the ship. Normally the total cycle of hydrogen as storage is less than 50% efficient, which is not good when batteries can deliver 90% or more. Heat though, is certainly needed for a passenger vessel at sea. A cargo vessel might not need so much.

The ship uses up the H2 in operation when there is no wind. The H2 recharges the batteries and provides heat, then the batteries run all systems. With enough wind, the solar panels can instead recharge the batteries and make new H2 using desalinated water and electrolysis. Their goal is to not use any net H2 on a typical day, but if winds and sun are poor, they will use it up, but plan their missions to leave with enough H2 to handle such situations. While docked, the panels and shore power build up the H2, or in theory, they might some day find H2 refilling at a “hydrogen marina.” When they left for Hawai`i from San Francisco, they only filled the H2 tank partially because they did not need it all the way full.

Every surface is covered with solar panels. The wing/sails are down, a computer driven motor handles them
 
BRAD TEMPLETON
 

The ship used to be a racing catamaran, but instead of sails it has two “ocean wing” fixed-shape sails. These solid wings can generate as much thrust as cloth sails twice their size. They are small, to not block the sun, but they are also computer controlled, allowing them to be used without much crew effort or requiring any skill. When the wind is really strong, the propellers and motors can spin in reverse to generate electricity to build up more H2. Full sized sails would do better though, and could be put up at night with no risk of blocking the sun. They seem to have shied away from traditional sail and wind power in spite of their well established value. Before they had the ocean wings, they tried installing wind turbines, which failed for obvious reasons.

Life on board is spartan. The catamaran’s cabin is small for a crew of 8. Also on board is a small science sub-crew taking the opportunity to study the oceans and wildlife on such an unusual voyage.

A ship has the space for H2 tanks and the ability to generate it, so this can make sense. I don’t think a future vessel would look like the Energy Observer, but hybrids of electric drive and traditional sail, adding what solar power can be had make sense. Every inch of the deck is solar panels, and there are even panels to get the sunlight reflecting off the water. As panels get cheap this makes sense, though you don’t want to forgo useful sails because of the shade they will cast if the wind will give you more than the sun.

It’s possible to foresee solar/wind/electric recreational boats. Operating recreational boats is highly polluting and expensive. Sailboats are clean and cheap but a lot of work and under many limitations. A hybrid, using electric power, could be an answer there, as well as an answer for the big cargo ships.

What next for Hydrogen?

Hydrogen may not power cars, but it has some chance at other vehicles that want to avoid burning fossil fuel:

  • Aircraft care immensely about weight. Batteries today can give only modest range to electric aircraft. It’s either H2 or synthetic/biofuel hybrid power trains there.
  • One special type of aircraft is quite interesting, the airship. While people have been scared of H2 there since the Hindenberg, it’s important to realize that H2 can be more than a lift gas, it can be the power fuel. It’s the only fuel that has negative weight, and you don’t need to pressurize it with big heavy tanks in an airship.
  • Trucks are looking at H2 because the battery weight for a truck takes up a large part of their 40 ton limit, and trucks have a harder time stopping for long enough to charge it. The 50% energy loss is trouble, but the weight limit is a legal requirement.
  • Grid storage with over 50% loss is a serious problem. But with H2, if you want more capacity, you just need more tanks. Doubling the tanks doesn’t double the cost, but doubling batteries does double the cost.

Other types of energy storage are not standing still, though. There are experiments with newer batteries, flywheels, aluminum, synthetic hydrocarbon fuels and more underway. It’s a space ripe for change.

Why We Need Green Hydrogen

BY:  RENEE CHO
View the original article here

Green hydrogen has been in the news often lately. President-elect Biden has promised to use renewable energy to produce green hydrogen that costs less than natural gas. The Department of Energy is putting up to $100 million into the research and development of hydrogen and fuel cells. The European Union will invest $430 billion in green hydrogen by 2030 to help achieve the goals of its Green Deal. And Chile, Japan, Germany, Saudi Arabia, and Australia are all making major investments into green hydrogen.

Photo: Dave Pinter

So, what is green hydrogen? Simply put, it is hydrogen fuel that is created using renewable energy instead of fossil fuels. It has the potential to provide clean power for manufacturing, transportation, and more — and its only byproduct is water.

Where does green hydrogen come from?

Hydrogen energy is very versatile, as it can be used in gas or liquid form, be converted into electricity or fuel, and there are many ways of producing it. Approximately 70 million metric tons of hydrogen are already produced globally every year for use in oil refining, ammonia production, steel manufacturing, chemical and fertilizer production, food processing, metallurgy, and more.

There is more hydrogen in the universe than any other element—it’s been estimated that approximately 90 percent of all atoms are hydrogen. But hydrogen atoms do not exist in nature by themselves. To produce hydrogen, its atoms need to be decoupled from other elements with which they occur— in water, plants or fossil fuels. How this decoupling is done determines hydrogen energy’s sustainability.

Most of the hydrogen currently in use is produced through a process called steam methane reforming, which uses a catalyst to react methane and high temperature steam, resulting in hydrogen, carbon monoxide and a small amount of carbon dioxide. In a subsequent process, the carbon monoxide, steam and a catalyst react to produce more hydrogen and carbon dioxide. Finally the carbon dioxide and impurities are removed, leaving pure hydrogen.  Other fossil fuels, such as propane, gasoline, and coal can also be used in steam reforming to produce hydrogen. This method of production—powered by fossil fuels—results in gray hydrogen as well as 830 million metric tons of CO2 emissions each year, equal to the emissions of the United Kingdom and Indonesia combined.

When the CO2 produced from the steam methane reforming process is captured and stored elsewhere, the hydrogen produced is called blue hydrogen.

Photo: parent55

Hydrogen can also be produced through the electrolysis of water, leaving nothing but oxygen as a byproduct. Electrolysis employs an electric current to split water into hydrogen and oxygen in an electrolyzer. If the electricity is produced by renewable power, such as solar or wind, the resulting pollutant-free hydrogen is called green hydrogen. The rapidly declining cost of renewable energy is one reason for the growing interest in green hydrogen.

Why green hydrogen is needed

Most experts agree that green hydrogen will be essential to meeting the goals of the Paris Agreement, since there are certain portions of the economy whose emissions are difficult to eliminate. In the U.S., the top three sources of climate-warming emissions come from transportation, electricity generation and industry.

Long haul trucking is difficult to decarbonize.
 Photo: raymondclarkimages

Energy efficiency, renewable power, and direct electrification can reduce emissions from electricity production and a portion of transportation; but the last 15 percent or so of the economy, comprising aviation, shipping, long-distance trucking and concrete and steel manufacturing, is difficult to decarbonize because these sectors require high energy density fuel or intense heat. Green hydrogen could meet these needs.

Advantages of green hydrogen

Hydrogen is abundant and its supply is virtually limitless. It can be used where it is produced or transported elsewhere. Unlike batteries that are unable to store large quantities of electricity for extended periods of time, hydrogen can be produced from excess renewable energy and stored in large amounts for a long time. Pound for pound, hydrogen contains almost three times as much energy as fossil fuels, so less of it is needed to do any work. And a particular advantage of green hydrogen is that it can be produced wherever there is water and electricity to generate more electricity or heat.

Hydrogen has many uses. Green hydrogen can be used in industry and can be stored in existing gas pipelines to power household appliances. It can transport renewable energy when converted into a carrier such as ammonia, a zero-carbon fuel for shipping, for example.

Hydrogen can also be used with fuel cells to power anything that uses electricity, such as electric vehicles and electronic devices. And unlike batteries, hydrogen fuel cells don’t need to be recharged and won’t run down, so long as they have hydrogen fuel.

Fuel cells work like batteries: hydrogen is fed to the anode, oxygen is fed to the cathode; they are separated by a catalyst and an electrolyte membrane that only allows positively charged protons through to the cathode. The catalyst splits off the hydrogen’s negatively charged electrons, allowing the positively charged protons to pass through the electrolyte to the cathode. The electrons, meanwhile, travel via an external circuit—creating electricity that can be put to work—to meet the protons at the cathode, where they react with the oxygen to form water.

Hydrogen Hyundai. Photo: Adam Gautsch

Hydrogen is used to power hydrogen fuel cell vehicles. Because of its energy efficiency, a hydrogen fuel cell is two to three times more efficient than an internal combustion engine fueled by gas. And a fuel cell electric vehicle’s refueling time averages less than four minutes.

Because they can function independently from the grid, fuel cells can be used in the military field or in disaster zones and work as independent generators of electricity or heat. When fixed in place they can be connected to the grid to generate consistent reliable power.

The challenges of green hydrogen

Its flammability and its lightness mean that hydrogen, like other fuels, needs to be properly handled. Many fuels are flammable. Compared to gasoline, natural gas, and propane, hydrogen is more flammable in the air. However, low concentrations of hydrogen have similar flammability potential as other fuels. Since hydrogen is so light—about 57 times lighter than gasoline fumes—it can quickly disperse into the atmosphere, which is a positive safety feature.

Storing liquid hydrogen. Photo: Jared

Because hydrogen is so much less dense than gasoline, it is difficult to transport. It either needs to be cooled to -253˚C to liquefy it, or it needs to be compressed to 700 times atmospheric pressure so it can be delivered as a compressed gas. Currently, hydrogen is transported through dedicated pipelines, in low-temperature liquid tanker trucks, in tube trailers that carry gaseous hydrogen, or by rail or barge.

Today 1,600 miles of hydrogen pipelines deliver gaseous hydrogen around the U.S., mainly in areas where hydrogen is used in chemical plants and refineries, but that is not enough infrastructure to accommodate widespread use of hydrogen.

Natural gas pipelines are sometimes used to transport only a limited amount of hydrogen because hydrogen can make steel pipes and welds brittle, causing cracks. When less than 5 to 10 percent of it is blended with the natural gas, hydrogen can be safely distributed via the natural gas infrastructure. To distribute pure hydrogen, natural gas pipelines would require major alterations to avoid potential embrittlement of the metal pipes, or completely separate hydrogen pipelines would need to be constructed.

Fuel cell technology has been constrained by the high cost of fuel cells because platinum, which is expensive, is used at the anode and cathode as a catalyst to split hydrogen. Research is ongoing to improve the performance of fuel cells and to find more efficient and less costly materials.

A challenge for fuel cell electric vehicles has been how to store enough hydrogen—five to 13 kilograms of compressed hydrogen gas—in the vehicle to achieve the conventional driving range of 300 miles.

The fuel cell electric vehicle market has also been hampered by the scarcity of refueling stations. As of August, there were only 46 hydrogen fueling stations in the U.S., 43 of them in California; and hydrogen costs about $8 per pound, compared to $3.18 for a gallon of gas in California.

Hydrogen gas pump.
Photo: Bob n Renee

It all comes down to cost

The various obstacles green hydrogen faces can actually be reduced to just one: cost. Julio Friedmann, senior research scholar at Columbia University’s Center on Global Energy Policy, believes the only real challenge of green hydrogen is its price. The fact that 70 million tons of hydrogen are produced every year and that it is shipped in pipelines around the U.S. shows that the technical issues of distributing and using hydrogen are “straightforward, and reasonably well understood,” he said.

The problem is that green hydrogen currently costs three times as much as natural gas in the U.S. And producing green hydrogen is much more expensive than producing gray or blue hydrogen because electrolysis is expensive, although prices of electrolyzers are coming down as manufacturing scales up. Currently, gray hydrogen costs about €1.50 euros ($1.84 USD) per kilogram, blue costs €2 to €3 per kilogram, and green costs €3.50 to €6 per kilogram, according to a recent study.

Friedmann detailed three strategies that are key to bringing down the price of green hydrogen so that more people will buy it:

  1. Support for innovation into novel hydrogen production and use. He noted that the stimulus bill Congress just passed providing this support will help cut the cost of fuel cells and green hydrogen production in years to come.
  2. Price supports for hydrogen, such as an investment tax credit or production tax credit similar to those established for wind and solar that helped drive their prices down.
  3. A regulatory standard to limit emissions. For example, half the ammonia used today goes into fertilizer production. “If we said, ‘we have an emission standard for low carbon ammonia,’ then people would start using low carbon hydrogen to make ammonia, which they’re not today, because it costs more,” said Friedmann. “But if you have a regulation that says you have to, then it makes it easier to do.” Another regulatory option is that the government could decide to procure green hydrogen and require all military fuels to be made with a certain percentage of green hydrogen.
The California National Guard designed hydrogen fuel cells that use solar energy for electrolysis to make green hydrogen. Photo: US Army Environmental Command

Green hydrogen’s future

A McKinsey study estimated that by 2030, the U.S. hydrogen economy could generate $140 billion and support 700,000 jobs.

Friedmann believes there will be substantial use of green hydrogen over the next five to ten years, especially in Europe and Japan. However, he thinks the limits of the existing infrastructure will be reached very quickly—both pipeline infrastructure as well as transmission lines, because making green hydrogen will require about 300 percent more electricity capacity than we now have. “We will hit limits of manufacturing of electrolyzers, of electricity infrastructure, of ports’ ability to make and ship the stuff, of the speed at which we could retrofit industries,” he said. “We don’t have the human capital, and we don’t have the infrastructure. It’ll take a while to do these things.”

Many experts predict it will be 10 years before we see widespread green hydrogen adoption; Friedmann, however, maintains that this 10-year projection is based on a number of assumptions. “It’s premised on mass manufacturing of electrolyzers, which has not happened anywhere in the world,” he said. “It’s premised on a bunch of policy changes that have not been made that would support the markets. It’s premised on a set of infrastructure changes that are driven by those markets.”

Researchers on working on hydrogen storage, hydrogen safety, catalyst development, and fuel cells. Photo: Canadian Nuclear Laboratories

There are a number of green energy projects in the U.S. and around the world attempting to address these challenges and promote hydrogen adoption. Here are a few examples.

California will invest $230 million on hydrogen projects before 2023; and the world’s largest green hydrogen project is being built in Lancaster, CA by energy company SGH2. This innovative plant will use waste gasification, combusting 42,000 tons of recycled paper waste annually to produce green hydrogen. Because it does not use electrolysis and renewable energy, its hydrogen will be cost-competitive with gray hydrogen.

A new Western States Hydrogen Alliance, made up of leaders in the heavy-duty hydrogen and fuel cell industry, are pushing to develop and deploy fuel cell technology and infrastructure in 13 western states.

Hydrogen Europe Industry, a leading association promoting hydrogen, is developing a process to produce pure hydrogen from the gasification of biomass from crop and forest residue. Because biomass absorbs carbon dioxide from the atmosphere as it grows, the association maintains that it produces relatively few net carbon emissions.

Breakthrough Energy, co-founded by Bill Gates, is investing in a new green hydrogen research and development venture called the European Green Hydrogen Acceleration Center. It aims to close the price gap between current fossil fuel technologies and green hydrogen. Breakthrough Energy has also invested in ZeroAvia, a company developing hydrogen-fueled aviation.

In December, the U.N. launched the Green Hydrogen Catapult Initiative, bringing together seven of the biggest global green hydrogen project developers with the goal of cutting the cost of green hydrogen to below $2 per kilogram and increasing the production of green hydrogen 50-fold by 2027.

Ultimately, whether or not green hydrogen fulfills its promise and potential depends on how much carmakers, fueling station developers, energy companies, and governments are willing to invest in it over the next number of years.

But because doing nothing about global warming is not an option, green hydrogen has a great deal of potential, and Friedmann is optimistic about its future. “Green hydrogen is exciting,” he said. “It’s exciting because we can use it in every sector. It’s exciting because it tackles the hardest parts of the problem—industry and heavy transportation. It’s interesting, because the costs are coming down. And there’s lots of ways to make zero-carbon hydrogen, blue and green. We can even make negative carbon hydrogen with biohydrogen. Twenty years ago, we didn’t really have the technology or the wherewithal to do it. And now we do.”