Resiliency takes center stage in new projects around the country

Projects like these, where resilience is central to their design and construction, are becoming more commonplace.

Written by: John Caulfield
View the original article here.

Resiliency

Perkins+Will has written the design controls for the redevelopment of a 28-acre surface parking lot in San Francisco into a mixed-use waterfront community called Mission Rock, which would have a mesa running through it to handle sea levels that are projected to rise as high as 66 inches by 2100, compared to 24 inches today. Courtesy Perkins+Will.

On July 28, the New Jersey Department of Environmental Protection awarded AECOM and a team that includes OMA, Magnusson Klemencic Associates, and Matrix New World Engineering the final design contract for a resilience project along the Hudson River. The primary goal is to reduce flooding in Hoboken, which has 2.3 miles of coastal exposure, and parts of Weehawken and Jersey City.

The approach of this project, which HUD awarded $230 million through its Rebuild by Design contest, has four integrated resilience components:

  • Resist, through a combination of hard infrastructure like bulkheads and floodwalls, and soft landscaping like berms that might double as parks.
  • Delay, through policy changes and infrastructure that slow stormwater runoff.
  • Store, with green and gray infrastructure improvements, such as bioretention basins and swales, to capture stormwater.
  • Discharge, by enhancing stormwater management systems and upgrading infrastructure such as sewer lines.

Skidmore, Owings & Merrill, which is working on a separate project to redevelop Hoboken’s Terminal and Rail Yard into a mixed-use transit-oriented community with more than $100 million in improvements, is coordinating its efforts with the Rebuild by Design team, whose study area encompasses the terminal/rail yard.

Projects like these, where resilience is central to their design and construction, are becoming more commonplace, as developers and their AEC teams adopt positive measures to give their property assets a fighting chance of surviving the ravages of natural disasters, and to minimize recovery costs.

The replacement Ocosta Elementary School in Westport, Wash., which opened in the fall of 2016, offers a safe haven of refuge to students and residents who would have less than 30 minutes to evacuate in the event of a tsunami. The 23-classroom school includes the first vertical shelter in North America, a rooftop evacuation platform 53 feet above sea level that’s accessible via four flanking stair towers enclosed in concrete.

The platform, which is anchored by concrete piles that extend 55 feet into the ground, can hold more than 1,000 people and withstand a 9.2-magnitude earthquake and the impact of incoming waves. Resilience accounted for $2 million of the school’s $16 million project cost.

Three-thousand miles to the east, a seven-acre site with 1,700 lineal feet of shoreline along East Boston’s waterfront is being transformed into Clippership Wharf, a mixed-used development that will have 478 apartment units on two finger piers. Owner/developer Lendlease took over this project from a previous developer that had planned for lots of surface and underground parking. “That’s just not right for this day and age,” says Nick Iselin, Leadlease’s General Manager of Development. Lendlease rewrote the plan with several resilience measures, including replacing old seawalls that had been part of the site’s industrial infrastructure.

Lendlease is converting one of the piers into a “living shoreline” by creating a series of terraces for new salt marshes and a habitat for Boston Harbor, which is subject to a 10-foot tidal influence. The first floor of each building will be 24 feet above Boston City Base. All infrastructure and mechanical systems will be located above the 100-year flood level. Garage levels will be flood resistant.

To meet Boston’s “Living with Water” ordinance, Lendlease created a 1,400-foot Harbor Walk that will be 14-16 feet above the water level. In all, Clippership Wharf will have 189,830 sf of open space.

Back on the West Coast, there’s a 28-acre parking lot south of AT&T Park, where the San Francisco Giants play, that is subject to sea levels that vary as much as 24 inches. Predictions estimate those levels could rise to 66 inches by 2100.

“We needed to manage that risk,” says Kristen Hall, LEED AP, Senior Urban Designer with Perkins+Will, which has written the design controls for the proposed mixed-used redevelopment of this waterfront site, called Mission Rock. Eventually, it will encompass 11 city blocks and include eight acres of parkland, 1,500 rental units, and a million sf of office space. The Giants and the Port of San Francisco are co-developers.

The design, Hall explains, calls for the creation of a mesa down the middle of the site, with minimal frontages that may flood. She calls these frontages the site’s “sacrificial edges.” Other edges will include loading docks that create redundant elevated building access, as the majority of Mission Rock’s buildings would be at higher elevations. The park area would use a series of grade changes as design features, such as an amphitheater, a sloped lawn, steps, and ramps.

In July, the first phase of the Cornell Tech applied science campus was completed on Roosevelt Island in New York City’s East River. That phase includes The House, a residential complex with 350 apartments for staff and faculty, and Bloomberg Center, a four-story, academic building.

The buildout of this 12.4-acre, $2 billion campus is expected to proceed through 2043 and expand to two million sf. SOM, in collaboration with Cornell University and Technion – Israel Institute of Technology, is the project’s master planner. Resilience is key to protecting this property.

Colin Koop, AIA, SOM’s Design Director, explains that the East River is a tidal estuary, and significant portions of the site lie within 100- and 500-year floodplains. So all of the architecture needs to be elevated. The main pedestrian walkway, called Techwalk, will allow people to enter the campus at its periphery and then rise gently through its open spaces at a slope that is largely imperceptible. Once they reach the central ridge, they would be surrounded by permeable façades “that help create a synergy between inside and outside spaces on campus,” he says.

Cornell, says Koop, has been a “sophisticated client that is grappling with realities larger than itself and this project.”

Many in the Faith Community are taking action to become Sustainable – is yours?

 

PJ PictureBy: Paul L. Jones, CPA
LEED Green Associate
Director, Financial Advisory Services for Emerald Skyline Corporation

 

 

churchHow do you approach your decisions — by thinking primarily of yourself? Or do you consider how your actions will affect the beliefs and lives of others? Some Christians never stop to think that their choices can hurt or destroy someone else’s faith. They justify their behavior, saying God doesn’t convict them for it.

Paul blames the “stronger” Christian for these shipwrecks. He says we’re responsible not only for our actions, but also for the effect of those actions. In the end, we are to care more about the “brother for whose sake Christ died” than about our own wants or desires (1 Corinthians 8:11).

Because our faith is on display before the world, God promises rewards but insists on responsibility. One of the rewards is freedom from condemnation. But that freedom doesn’t mean license to do as we please without considering those who watch our example. Through the Spirit, we must discern the greater good and act on it.

As St. Paul’s teaching relates to climate change and sustainability, Dan Misleh, executive director of the Catholic Climate Covenant, advises, “How we take care of creation will dictate how we care for one another and vice-versa. The Catholic approach holds that we are concerned about both God’s good gift of creation and the impacts of environmental degradation on people, especially those most vulnerable: the poor at home and abroad. As Pope Francis said in Laudato si; “We are faced not with two separate crises, one environmental and the other social, but rather with one complex crisis which is both social and environmental. Strategies for a solution demand an integrated approach to combating poverty, restoring dignity to the excluded, and at the same time protecting nature.’ For Catholics, this is not just about saving the polar bear but also saving ourselves from our own destructive habits.” (From “The Faith Community and Climate Change, A Q&A with Dan Misleh” by John Gehring, Commonweal, April 27, 2017)

In answer to the question, “Are Catholic bishops and clergy rallying behind the Pope’s message or has it been a cautious reception?”; Mr. Misleh replied:

“I think many are embracing the challenges of Laudato si.’ I’m encouraged by the leadership of Catholic leaders like Archbishop Dennis Schnurr in Cincinnati, who is supporting our Catholic Covenant Energies program, in which we bring our education and energy efficiency expertise along with financing to help parishes and schools reduce their energy use, save money and take advantage of the opportunity to educate parishioners, students, and parents about the importance of caring for creation and caring for the poor. I also think of Cardinals Cupich (Chicago), O’Malley (Boston), and Dolan (New York), who have benchmarked all archdiocesan buildings, begun solar installations, and systematically enrolled parishes in energy-efficiency programs.”

Also of note, “during this Year of Creation (2017) — unique to the Diocese of Burlington — Catholics throughout Vermont are encouraged to reflect upon the pope’s encyclical, “Laudato Si’,” and to discover Christ in all living things. From the red clover to the hermit thrush to the Green Mountains, all these gifts that surround us bear the stamp of God and are entrusted to our care, not only for personal benefit but the benefit of all those who share our common home and all those who will inhabit it after us.” (Vermont Catholic, Spring 2017)

The Church of England has created “ChurchCare,” a comprehensive source of information for everyone managing a church building in support of all those in parishes, dioceses and cathedrals caring for their buildings today and for the enjoyment of future generations.” It’s national environmental campaign exists to enable the whole Church to address – in faith, practice and mission – the issue of climate change. As the Archbishop of Canterbury, Justin Welby, is quoted: “Actions have to change for words to have effect.” (See www.churchcare.co.uk)

In another example of faith in action, the Florida East Coast Baptist Association has promoted “Green the Church” to amplify green theology, promote sustainable practices in the member churches and increase the power and potential of the national climate movement.

Although not all churches and dioceses are responding with the same level of commitment, the call to putting faith in action is being heard and answered by many:

  • In addition to evaluating all of the buildings for water use, energy efficiency and greenhouse gas emissions, the Archdiocese of Chicago has done a significant amount of work in making its buildings energy efficient. St. Joseph College Seminary, for example, has high-efficiency lighting control and heating systems and is LEED Gold certified.  The field operations center for Resurrection Cemetery has been heated with a solar system since 1978. The rooftop solar system deployed at Old St. Mary’s School generates an average 40 percent of the building’s energy needs during the summer months.
  • As part of the effort to adapt St Patrick’s Cathedral in New York to the structural and environmental standards required of the 21st century, the building has been integrated with a state-of-the-art geothermal plant. The new plant allows the cathedral and adjoining buildings which total 76,000 square feet to regulate temperature with increased efficiency and a reduction in CO2 emissions. The Cathedral’s new plant is capable of generating 2.9 million BTU’s per hour of air conditioning and 3.2 million BTU’s per hour of heating when fully activated. Richard A. Sileo, Senior Engineer with Landmark Facilities Group, a member of the design team, says in a release: “We conducted a feasibility study and found that a geothermal system let us meet our goals with the smallest impact.”
  • At a more grass roots level, The Record, Archdiocesan news for Central Kentucky Louisville) reports on green practices of parishes and faith communities its September 21st, 2017 issue highlighted in an educational and inspirational event held on September 12th entitled “Caring for Creation: Stories of Success from Several Faith Communities:”
  • The Sisters of Charity of Nazareth (Kentucky) said during the event that they have made significant strides in developing and implementing green initiatives sincethey added a commitment to care for creation to their mission statement in the mid-1990s. The statement reads in part: “Sisters and Associates are committed to work for justice in solidarity with oppressed peoples, especially the economically poor and women, and to care for the earth.”
  • The Congregation of nuns has committed to reduce their greenhouse gas emissions to zero by 2037.
  • They have also committed to becoming a “zero waste campus,” meaning that everything is either compostable or recyclable and nothing is sent to a landfill. They are already performing “waste audits” to determine how to eliminate waste.
  • Francis of Assisi parish has created an Ecological Stewardship committee that has held educational presentations on ecological sustainability, encouraged recycling and reusing cups, instead of foam cups, at parish events (which infuses a sustainable mindset among parishioners); and provided funds to convert lights at its homeless shelter from incandescent bulbs to compact fluorescent lights and is currently working to switch to LED lighting.
  • The parish cluster of St. James and St. Brigid reported at the Sept. 12 event that parishioners created a Creation Care Team last year under the guidance of the Catholic Climate Covenant.
  • The Creation Care Team has focused on decreasing overall energy usage, expanding recycling and supporting the St. James School Green Club, which tends anorganic vegetable and pollinator garden on campus, said Cynthia Dumas, one of the members of the Creation Care Team.
  • The parish bulletin also includes weekly articles on environmental issues and updates about what the care team is doing, Dumas said.

Whether it is at the direction of the archbishop, bishop or other Church leadership, or from the motivation of parishioners seeking to bring sustainability to their faith community, every action that puts into practice the Pope’s teachings on the care of creation contributes to making the world a better place for all. As the mission outreach and communication coordinator for the Diocese of Burlington envisions: “If the Diocese of Burlington’s Year of Creation is successful in raising awareness of and action toward ecological justice, it can serve as an encouraging example for other Catholic dioceses and communities of faith throughout the country and the globe. There are an estimated 1.2 billion Catholics on Earth — just think of what could be achieved if we committed to caring for the created world together.”

Then, as all faiths and faith communities grow in awareness and begins to truly adopt sustainable practices – not just at the parish, but also in the home, at work or school, and make it a priority in our politics – we can change, and quite possibly, save the world.

Faith-based organizations that help religious communities become sustainable include: Catholic Climate Covenant, Florida East Coast Green Union, Forum on Religion and Ecology, Interfaith Power and Light, The Green Seminary Initiative and Green Faith.

The Religions of the World Agree: Being Sustainable Is a Moral imperative; So, How Can We Bring the Ecology of Faith Home

PJ PictureBy: Paul L. Jones, CPA
LEED Green Associate
Director, Financial Advisory Services for Emerald Skyline Corporation

“Climate change is the most serious issue facing humanity today. It is already seriously impacting economies, ecosystems, and people worldwide. Left unchecked, it will cause tremendous suffering for all living beings.” From the International Dharma Teachers’ Statement on Climate Change, 1/8/2014

Because creation was entrusted to human stewardship, the natural world is not just a resource to be exploited but also a reality to be respected and even reverenced as a gift and trust from God. It is the task of human beings to care for, preserve and cultivate the treasures of creation.” Saint Pope John Paul II, The Church in Oceania, 2001, n.31

“For the Church of the 21st Century, good ecology is not an optional extra, but a matter of justice. It is therefore central to what it means to be a Christian.” Dr. Rowan Williams, Archbishop of Canterbury, Church Care, Church of England

“We are convinced that there can be no sincere and enduring resolution to the challenge of the ecological crisis and climate change unless the response is concerted and collective, unless the responsibility is shared and accountable, unless we give priority to solidarity and service.” From the Joint message from Pope Francis and Ecumenical Patriarch Bartholomew on the World Day of Prayer for Creation, September 1, 2017

Screen Shot 2017-10-03 at 11.59.24 AM

‘Ecology’ (from the Greek oikos) refers to the Earth as our home; our place of wellbeing. For Christians, ecological stewardship is the conviction that every gift of nature and grace comes from God and that the human person is not the absolute owner of his or her gifts or possessions but rather the trustee or steward of them. These gifts are given in trust for the building of the Kingdom of God. Christians are called to appreciate the spiritual and theological significance of the Earth and to exercise ecological stewardship of the Earth and its resources. The gifts of creation are not simply there for human use, but have their own dignity, value and integrity.

In April 2016, Muslim leaders delivered the Islamic climate change declaration. From an article announcing its’ release, “Islam teaches us that ‘man is simply a steward holding whatever is on earth in trust’,” says Nana Firman, Co-Chair of the Global Muslim Climate Network. “The Declaration calls upon all nations and their leaders to drastically reduce their greenhouse gas emissions and support vulnerable communities, both in addressing the impacts of climate change and in harnessing renewable energy.”

“Mahatma Gandhi urged, ‘You must be the change you wish to see in the world.’ If alive today, he would call upon Hindus to set the example, to change our lifestyle, to simplify our needs and restrain our desires. As one sixth of the human family, Hindus can have a tremendous impact. We can and should take the lead in Earth-friendly living, personal frugality, lower power consumption, alternative energy, sustainable food production and vegetarianism, as well as in evolving technologies that positively address our shared plight.” From the Hindu Declaration on Climate Change

“In the Jewish liturgy there is a prayer called Aleinu in which we ask that the world be soon perfected under the sovereignty of God (le-takein ‘olam  be-malkhut Shaddai). Tikkun ‘olam, the perfecting or the repairing of the world, has become a major theme in modern Jewish social justice theology. It is usually expressed as an activity, which must be done by humans in partnership with God. It is an important concept in light of the task ahead in environmentalism. In our ignorance and our greed, we have damaged the world and silenced many of the voices of the choir of Creation. Now we must fix it. There is no one else to repair it but us.” by Rabbi Lawrence Troster

So, all of the world’s major religions and all of the spiritual leaders of the world agree: Being a faithful steward in the care of His Creation is a religious and spiritual mandate: It is our obligation. But then we see churches that run the air conditioning full blast – when only a few people are present or we witness waste in water consumption, food preparation and other church, school and ecological waste in related parish activities. I think this lack of prioritization among every pastor, priest, rabbi, imam, swami and teacher, not just the leadership of a few, as evidenced by the failure to make every building occupied by a religious or spiritual institution sustainable.

As Saint James tells us “Who is wise and understanding among you? By his good conduct let him show his works in the meekness of Wisdom.” (James 3:13)

Hartford Institute estimates there are roughly 350,000 religious congregations in the United States. This estimate relies on the RCMS 2010 religious congregations census. Of those, about 314,000 are Protestant and other Christian churches, and 24,000 are Catholic and Orthodox churches. Non-Christian religious congregations are estimated at about 12,000.

According to the Catholic Climate Covenant in their presentation on the Catholic Covenant Energies program, “there are an estimated 70,000 Catholic-owned buildings in the United States.” Considering that the Catholic Church represents less than 10% of all religious congregations in the U.S., the opportunity for reducing the carbon footprint through sustainable practices in our churches, synagogues, mosques, schools, day care centers and other facilities operated by religious congregations is enormous. The Covenant calculates that by implementing proven and affordable conservation measures, Catholic-owned buildings can reduce energy use in buildings owned by 25% saving the Catholic Church $630 million in energy costs, “reducing energy use by an equivalent of 8.7 million tons of coal.”

Now, imagine if all faith denominations practiced what they preached – and not just in the United States but throughout the world! The Church and all religious denominations would then make a real – and positive – impact on the lives of all people, reducing suffering and promoting the cause of social justice. Further, the savings from lower utility bills and other sustainable practices can be diverted to core Church ministries like education, youth outreach and the care of the least in their community. Finally, through the implementation of sustainable practices, parishioners would learn how to be sustainable in their personal lives – saving on their utility bills helps the poor afford other necessities – life food or medicine.

So, what is a congregation to do?

In his book, “Inspiring Progress: Religions’ Contributions to Sustainable Development,” Gary Gardner, provides five capacities in which religion can help meet the challenge posed by climate change and sea level rise:

  1. Engage members of faith-based groups
  2. Moral authority – offer ethical guidelines and religious leadership
  3. Provide meaning by shaping world views and new paradigms of well-being
  4. Share physical resources; and
  5. Build community to support sustainable practices

And then there is the key to the Kingdom, be sustainable. Here are some of the most cost-effective steps any parish can take to begin the process of becoming a sustainable religious community. These steps can help reduce energy bills, tackle climate change and build a more sustainable future.

  • Air seal doors, windows and any other drafty locations which reduces the waste of energy used to heat or cool the facility;
  • Employ energy efficiency technology that optimizes energy performance which includes LED lighting, occupancy sensors, and insulating hot water storage tanks.
  • Be prudent in energy use: adjusting the thermostats 1 degree lower in the church, parish hall or other facilities can cut heating costs 5 percent over the course of a heating season. Setting the air-conditioning a few degrees higher has an equal effect; and
  • Improve water use efficiency by using low-flush toilets and urinals in parish facilities, landscaping with plants that don’t require a lot of water, collecting and reusing water for irrigation, employing detection devices to fix leaking pipes and plumbing (Installing high-efficiency plumbing fixtures and appliances can help reduce indoor water use by one-third, saving on water and sewer bills, and cutting energy use by as much as 6 percent);
  • Choose local suppliers and contractors who employ sustainable practices like energy efficiencies and use of “green” products;
  • Identify and employ wider, imaginative ways – like a temporary farmer’s market, reversible accommodation for classes, meetings and other uses to use church properties when not engaged in worship; and
  • Reduce, reuse and recycle.

Then, pewsthere are larger projects – like replacing HVAC equipment and appliances that are near the end of their functional life; adding solar panels, installing a geo-thermal plant, replacing vehicles with fuel-efficient, electric, hybrid or alternative fuel vehicles and encourage use of mass transit, carpooling and telecommuting.

The Catholic Climate Covenant and its sister organization, Catholic Covenant Energies, a non-profit organization which is working with the Archdiocese of Cincinnati and similar for-profit organizations like Commons Energy which is working with the Archdiocese of Vermont are available to provide financing.

Now is the time for our religions to take the lead in bringing sustainable practices to their properties, to their parishes and to their community… From the first letter of Saint John (3:18), “Little children, let us not love in word or talk but in deed and in Truth.”

Want a healthy building? Follow this primer on two new wellness standards

This article is republished on Sustainable Benefits for educational purposes.
View the original article here: Perkins+Will’s Ideas + Buildings

By Kate Kerbel

WELL

While our industry’s focus on wellness may seem like just the latest trend, occupant health has been an important goal of the built environment for centuries. In the 1800s, urban infrastructure allowing access to fresh water, natural light, and clean air significantly reduced the number of deaths from infectious diseases like tuberculosis, cholera, and yellow fever. Additionally, in the 1900s, doctors consulted on the design of school gymnasiums, advising on how the environment could help support human health.

Today, with individuals spending on average over 40 hours a week at work, health and wellness are taking center stage. Labor and healthcare spending also comprise the bulk of operating expenses—making happy and healthy employees a smart investment.

Since its development in the 1990s, the LEED rating system has been applied to over 19.1 billion total commercial square feet. Along with other systems like BREEAM, Energy Star, and the Living Building Challenge, green building design and operations work to conserve energy across the globe. A serendipitous byproduct of green design has become apparent: people like working in green buildings better. Green buildings ensure access to daylight, incorporate biophilia, provide clean air, and leverage healthy materials; it’s no wonder people like spending time in them.

In recent years, two new wellness rating systems have emerged. Both use research-based strategies to evaluate buildings not by how much energy they save or how they impact the environment, but by how they can directly contribute to occupant health.

WELL was developed by Delos and has a somewhat similar framework and documentation process to its “cousin,” LEED. Both certifications are administered by the Green Business Certification (GBCI), which continues to improve and streamline the synergistic documentation processes.

Fitwel, developed by U.S. Centers for Disease Control and Prevention (CDC) and the General Services Administration (GSA), and administered by the Center for Active Design, aims to identify the most impactful strategies for space and does not require a technical design background to administer.

Perkins+Will is well versed in both systems. We’ve committed to achieving Fitwel certification for all our North American offices, and we have a handful of WELL-certified projects, including the ASID Headquarters—the first space in the world to earn both both LEED and WELL Platinum Certification.

ASID

The ASID Headquarters in Washington, D.C., was WELL Certified at the Platinum level under WELL v1 in June 2017.

As a Fitwel Ambassador and our firm’s first WELL Accredited Professional, I’ve gotten a lot of questions about the two systems. In just one year, I have seen a huge increase in interest, especially from developers. In response, here are my answers to two of the most frequently asked questions from those considering these emergent systems.

HOW DOES WELL DIFFER FROM LEED?

Impact Categories

As opposed to LEED’s Location & Transportation, Sustainable Sites, Water Efficiency, Energy & Atmosphere, Materials & Resources, and Indoor Environmental Quality categories, WELL divvies up its 100 Features (credits) into: Air (Quality), Water (Quality), Nourishment, Light, Fitness, Comfort, and Mind. There are naturally some synergies between the categories: For example, an automated daylight sensor that dims overhead lights when sufficient daylight is present saves energy, but it also reduces glare and allows people to work in a naturally lit space. Conversely, some of the categories prioritize occupant health over energy savings . For example, WELL requires that paper towels be provided in restrooms because automated hand blowers are less sanitary. Through the LEED lens, the additional use of material would be discouraged.

On-Site Testing

LEED requires thorough documentation for the majority of credits, including annotated floor plans, measurements, manufacturer documentation, etc. WELL, on the other hand, requires signed letters of assurance from the architect, contractor, MEP engineer, or owner for many Features. Then, the GBCI sends their own WELL Assessor to the site to visually observe that all the policies are in place, and to conduct rigorous testing to confirm air and water quality standards.

Recertification

Unlike LEED, WELL requires project recertification for construction/major renovation projects as well as interiors projects every three years, which means a WELL Assessor will come back to the site to make observations and rerun quality tests. Projects may either meet the same level of certification they originally earned, be awarded a higher certification than their original level, or lose certification. Core and shell projects, however, do not need to be recertified.

Preconditions

There are more preconditions in WELL (called prerequisites in LEED) than you might expect. For certification or compliance to be awarded, all applicable WELL preconditions need to be met. The number of preconditions that must be met depends on the project typology. For example, new construction/major renovation projects have 41 preconditions, while core and shell projects have 26.

Levels of Certification

Certification starts at silver and consists of Silver, Gold, and Platinum. Meeting all of the preconditions earns a silver certification. Gold level certification is achieved by meeting all WELL preconditions, in addition to between 40 to 80 percent of the optimization features. Platinum level certification is achieved by meeting all preconditions, as well as 80 percent or more of the optimization features.

WHICH STANDARD IS BEST FOR MY BUILDING?

There are several compelling reasons to use each system. For instance, if a client comes to us with a large real estate portfolio and is interested in tracking hundreds of locations, Fitwel would be the best choice. Fitwel is relatively quick and straightforward for facility managers to use themselves to find out if their buildings earn zero, one, two, or three stars. Furthermore, with a large portfolio, facility managers would be able to benchmark all of their locations and set company goals. For example, they may want to bring all of their locations up to two stars over a certain number of years. Fitwel gives the user feedback regarding what changes the building/operations can make that will have the most impact on improving their workplace.

WELL, because of the more substantial effort and cost, realistically would be ideal for a few featured locations of a large portfolio at this point in time. The process of achieving WELL looks similar to that of achieving LEED: It should be discussed early in the project design process and will require members of the architecture, engineering, and operations team to work together to submit documentation.

Lastly, a client could also pursue both Fitwel and WELL for a building, as we are doing with our own Perkins+Will Dallas office, since there are unique benefits to both. Also, keep in mind that certifications are not necessary to ensure the design of a healthy space. Similar to designing green buildings, it is completely possible to design the healthiest of spaces using thoughtful design concepts that great architects have pursued throughout history without completing a formal documentation system.

 

Well Building Certification and How We Plan to Achieve It in Boca Raton

Julie

 

By Julie Lundin, Founder, LEED AP ID+C, NCIDQ, ASID
Director of Sustainable Interior Design for Emerald Skyline Corporation

 

Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. Our renovation includes many sustainable features with the intent to obtain LEED certification from the USGBC. In addition, we hope to achieve a “wellness” standard certification, WELL or Fitwel. Our project has gone through many design changes throughout the renovation process however sustainability and a healthy built environment continue to be a priorityI have written about the USGBC LEED Certification previously. This article focuses on “well” certifications that are available to those who want to impact and improve the health and well-being of people through the built environment. Design plays a significant role in human health.   Designing for wellness (salutogenic design) is a measurable aspect of design that can help a building’s inhabitants operate at their peak effectiveness, maintaining physical and mental well- being, helping them to lead healthier, and therefore longer lives. It is the ultimate investment in people, in an architectural sense.

The WELL Building Institute has developed a holistic approach to health and well-being in interior places where we live, work and play by using the WELL Building Standard, which aims to transform indoor environments by placing health and wellness at the center of design and construction decisions. The WELL Building Standard focuses on seven major areas: air, water, nourishment, light, fitness, comfort and mind.

Design is frequently associated with the concepts of beauty, color, texture and other aesthetic attributes; all of which were taken into consideration during the design of our building. However, as an Interior Designer and LEED AP, it was also important to incorporate one of the most powerful elements of building and space design which is the opportunity to impact and improve the health and well-being of our occupants. Below are some of the strategies that we applied in our project to the Well Building Standard seven concepts of Well building:

AIR

  • We selected low VOC materials and those with no harsh chemicals to reduce off-gassing of VOC’s to limit the likelihood that occupants come into contact with harmful, harsh chemicals
  • Our building has no permanent wall-to-wall carpeting, an open space plan for easy and effective cleaning
  • Incorporating natural and biophilic elements such as plants, a living wall, and natural materials.

WATER

  • Encourage hydration of our occupants by placing a water dispenser with fresh citrus in the design studio area for easy access to all.
  • Installation of a reverse osmosis water filtration system to enhance water quality and taste.
  • Additional energy efficient refrigerator with a filtered water container for cold water that is not bottled.

NOURISHMENT

  • Our space has been designed to provide a full kitchen to occupants so that they may prepare or store healthy meals.
  • Numerous seating areas are available to encourage gathering and sharing meals.
  • Fresh fruits, vegetables and nuts will be out on a regular basis for healthy snacks.

LIGHT

  • We have specified BioLight (biolightllc.com) healthy LED light fixtures that provide appropriate lux and equivalent melanopic lux levels to prevent eye strain while also aligning with the body’s circadian rhythm.
  • Reduced glare by positioning light fixtures strategically, provide task lighting, and install an exterior awning to provide shading at the windows.
  • Daylight was considered in the installation of large windows on the south façade of the building to allow for access to natural light and views of the outdoors.

FITNESS

  • Our building is one story with an open space plan which encourages occupants to move frequently and interact with each other.
  • The grounds of the property will contain a water element, butterfly garden, and green outdoor seating areas to encourage time spent in nature.
  • We have installed two showers and bicycle storage to promote active transportation and exercise.

COMFORT

  • Select furniture that enables our occupants to be more active during the work day and offers an alternative to prolonged sitting. We have designed numerous collaboration areas with comfortable sofas and chairs.
  • Our open space plan and newly installed ADA bathroom provides an equitable environment for any occupants with physical disabilities.
  • We have included both collaboration and quiet areas so that occupants can be acoustically comfortable and select their more productive environment depending on their activity.

MIND

  • We have created a beautiful, collaborative space so our occupants and associates will be happy to spend time there
  • Incorporated biophilic design with a living wall, large windows, and natural elements to allow occupants to be connected to nature even while indoors.
  • We have designed the space to have cozy and relaxing areas in addition to the productive work spaces This includes a loft that encourages the opportunity for relaxation and refuge with time spent reading and meditating.

 

The Fitwel Certification System is a unique building certification system that positively impacts occupant health and productivity through an integrated approach to workplace design and operations. Fitwel’s development was led by the U.S. Centers for Disease Control and Protection (CDC) and the General Services Administration (GSA). It is an evidence based approach as research by the CDC has shown that health promotion through programs, policies and environmental changes can improve employee health and productivity, with potential savings in healthcare costs. The Fitwel scorecard was developed by experts in public health, facility management and design. Each criterion is linked by scientific evidence to (at least) one of seven health impact categories.

We are confident that our design decisions will enable us to achieve a Well Certification. It is of the utmost importance that our project enhances the quality of life and health of all who spend time there. We encourage this forward way of designing and hope to see many Well Certified buildings in the future.

Referemces:

https://fitwel.org/

https://www.wellcertified.com/

https://www.wellcertified.com/en/articles/design-wellness-strategies-unite-health-design

https://www.littleonline.com/think/the-connection-between-space-and-wellness

http://standard.wellcertified.com/light/circadian-lighting-design

A Wood Fence Just Won’t Do

Wood is a great material for a myriad of products, but not for a fence. With consistent weather and pest exposure, wood fences often succumb to a number of factors that decrease the overall value of your fence and property. You’ll find that with a wood fence, weather and pest exposure can cause:

  • Rotting
    • Warping
    • Splintering
    • Staining
    • Integrity loss

Many of these issues are caused by wind, sun exposure, freezing temperatures and snow, as the heating and cooling often breaks down the wood fibers and the overall integrity of the fence. This results in panel shrinking, meaning an overall loss of security and privacy. And because wood is composed of organic materials, wood fences often become food for termites, wood ants and other pests.

These issues mean wood fences must be repaired and replaced more frequently, which translates to more wasted materials and new materials to supplement replacing the old. This inevitably reflects on the wood industry, which participates in logging and other practices detrimental to the environment.

Emerald Skyline Corporation is proud to offer Trex Fencing to commercial building and property owners. If you’re interested in installing Trex Fencing at your commercial property, please email us at info@emeraldskyline.com. Please also read through some of the most commonly asked questions about why Trex Fencing is superior to wood:

WHY IS TREX® FENCING BETTER THAN WOOD?

Trex Fencing offers superior durability and performance that you can’t get from wood. Trex Fencing resists termites, won’t rot, warp, or splinter and never needs staining or painting. What’s more, Trex Fencing is made from 95% recycled materials (reclaimed wood as well as recycled plastic), making it an environmentally-friendly choice you can feel pleased about.

IF TREX® FENCING IS MADE FROM RECYCLED MATERIALS, WHY IS IT MORE EXPENSIVE THAN WOOD?

While most of the raw materials used in making Trex® Fencing are recycled, these materials are carefully processed to ensure the highest level of quality and performance. The end result is fencing that performs better than wood, actually lowering your cost over time through less maintenance.

WHAT IS THE LIFETIME VALUE OF TREX FENCING?

With wood fences, maintenance costs add up over time. Although Trex® Fencing costs more initially, you’ll never have to sand, stain or paint your Trex Fencing. Over the life of your fence, those reduced maintenance costs add up to a greater value than wood – not to mention the value of all the time you get to spend enjoying your fence rather than working on it.

WHAT IS THE DIFFERENCE BETWEEN STOCKADE COMPOSITE FENCES AND INNOVATIVE HIGH-PERFORMANCE TREX FENCING?

Understanding the differences between a stockade composite fence and an innovative high-performance Trex® fence is an important factor in distinguishing the benefits of Trex.

Stockade Composite Fences (Dog-Eared). These traditional types of fences use backer rails and pickets screwed or nailed to the rails. Fasteners are visible on these types of fences. True privacy is hard to obtain because the expansion of the material at higher temperatures requires the pickets to be gapped during installation. The gap becomes even more pronounced when the temperatures drop and the material contracts. A board-on-board (overlapping picket) design could be used but that creates additional expense and still won’t fully close gaps if the boards warp. Because backer rails are usually exposed on one side of the fence, determining which side will face the neighbors could lead to difficult conversations. The typical recommendation for stockade-style fences is to install them on 6′ post centers which adds costs for posts and causes extra time and expense for labor. Stockade composite fences are usually not tested or backed with product engineering.

Innovative High-Performance Trex® Fencing. The innovative design of Trex® Fencing includes a board-on-board appearance with top and bottom fascia rails, capped with an attractive shadow-line. The fence’s innovation isn’t just about appearance — it is easy for do-it-yourselfers or professionals to install. The form and function of the components were also carefully considered during development. For example, the brackets allow fasteners to be hidden and the interlocking picket system not only provides complete privacy, it eliminates warping and strengthens the fence. Trex® Fencing is installed on 8’ post centers reducing additional product cost and extra time for labor.

BEYOND USING RECYCLED MATERIALS, WHAT OTHER ENVIRONMENTALLY-FRIENDLY PRACTICES DOES TREX® EMPLOY?

The Trex environmentally-friendly manufacturing process recycles factory refuse/runoff back into the manufacturing line. Within the manufacturing plants, the trailers that carry product run on vegetable-based oil hydraulics. Trex is a member of the USGBC (U.S. Green Building Council) and Trex products contribute to LEED (Leadership in Energy and Environmental Design) points.

Emerald Skyline Partners with Trex Fencing to Provide Technologically Advanced Eco-Friendly Composite Fencing Solutions

South Florida-based Emerald Skyline brings the strength of wood without the maintenance to commercial fencing.

“We haven’t felled one tree in the making of Trex high-performance composite fencing. Ever.”

June 9, 2017 from Emerald Skyline Corporation (www.emeraldskyline.com)

BOCA RATON, FL, June 9, 2017 – FOR IMMEDIATE RELEASE

Today, Emerald Skyline announced that it has partnered with Trex Fencing to provide revolutionary eco-friendly composite fencing solutions that offer privacy as well as durability for commercial and industrial properties. Together, we offer high performance and low maintenance privacy resolutions.

Trex Seclusions® are composed of 96% recycled wood and plastic and are manufactured in a facility that uses an eco-friendly processing method that eliminates the use of smoke stacks. In fact, the average 100-linear foot Trex composite fence contains 140,000 recycled plastic bags, making Trex one of the largest plastic bag recyclers in the United States.

This high-performance product never needs painting or staining, resists insect damage and won’t warp, rot, or splinter. The interlocking picket system installs quickly and easily and is strong enough to withstand winds up to 130 mph, passing the Miami/Dade wind load certification tests—making this an excellent choice for property owners in South Florida.

The durability and strength of this fencing system is only surpassed by its aesthetic beauty—available in three rich, natural colors that compliment any landscape. The interconnecting pickets have a clean, finished appearance on both sides with no structural boards visible inside or out. Additionally, this system offers true privacy with no gaps between pickets.

“We are always looking for ways to provide superior products and services to meet our clients sustainability and resiliency needs. We are pleased to add TREX Fencing to ChargePoint EV charging stations and Blue Pillar Internet of Things powered by Aurora to the quality products Emerald Skyline provides to our clients and customers.” reports Abraham Wien, LEED AP O+M, Director of Architecture & Environmental Design for Emerald Skyline.

For more than two decades, Trex has invented, defined, and perfected the composite deck category, becoming the world’s largest manufacturer of wood-alternative decking products. Never content to settle, they continue to make strides in outdoor engineering, melding innovation with environmental responsibility and beautiful form with powerful function. Trex is the first company to combine the durability of recycled plastic with the natural beauty of reclaimed wood.

To find out more information about Trex fencing solutions at your building or facility, please contact Abraham Wien at aw@emeraldskyline.com or call us 305.424.8704.

Amazon Invests In Hydrogen Fuel Cell Electric Vehicles

By: Tina Casey on Triple Pundit

Amazon Hydrogen
Retail giant Amazon made waves with its recent forays into the entertainment field. And now it looks like the sprawling enterprise is about to pull the rug out from under hydrogen fuel cell skeptics.

Last week the company signed a deal with fuel cell innovator Plug Power for a new generation of zero-emission, hydrogen-powered electric forklifts and other equipment at its fulfillment centers.

Warehouse operations aren’t the most exciting sector in the auto industry, but the new Amazon forklift deal could make a big difference for the future of fuel cell electric cars. That market has been slow to take off, but the Amazon announcement adds momentum to the trend, helping to keep investors and auto manufacturers interested in pushing the technology forward.

A big deal for hydrogen fuel cell vehicles

Fuel cell vehicles run on electricity, like the now-familiar battery electric vehicles. Both types of EV emit no air pollutants. The main difference is that fuel cells generate electricity on-the-go through a chemical reaction. Battery EVs run on stored electricity.

That difference looms large in warehouse operations, where excess fat shaved from time and space translates into big bottom-line savings.

Battery-powered forklifts require relatively long charging times, and extra storage space for battery charging. In contrast, fuel cell forklifts can be fueled up in a matter of minutes, like an ordinary gas-powered vehicle, and they don’t require a “battery room” or other excess storage.

Hydrogen fuel cell forklifts have already begun to establish a solid track record in the logistics sector, and it looks like Amazon didn’t take much convincing.

The recent deal enables the company to acquire more than 55 million common shares in Plug Power in connection with a $600 million commitment from Amazon to purchase goods and services from Plug Power.

This could be just the beginning…

Amazon and Plug Power plan on a relatively modest start for the new venture, with a total of $70 million in buys this year for fuel cell equipment at selected fulfillment centers.

What’s really interesting about the deal is the “and services” part of the agreement. Forklifts appear to be just the start of a wide-ranging collaboration between the two companies, leading to other applications.

Here’s Plug Power CEO Andy Marsh enthusing over the potentials:

“This agreement is a tremendous opportunity for Plug Power to further innovate and grow while helping to support the work Amazon does to pick, pack and ship customer orders. … Our hydrogen fuel cell technology, comprehensive service network, and commitment to providing cost-savings for customers has enabled Plug Power to become a trusted partner to many in the industry and we are excited to begin working with Amazon.”

To put this in perspective, consider that just a few years ago it was difficult to get investors interested in fuel cell technology. The hydrogen economy dream was hitting a harsh reality — namely that the technology was not quite ready for prime time. Growing competition from battery-powered EVs also helped to shove hydrogen fuel cells down the ladder.

TriplePundit’s RP Siegel interviewed Marsh about the fuel cell dilemma in 2012, and the CEO made these observations about Plug Power, forklifts and the future of fuel cell EVs:

“With limited capital, we had to be selective in our decisions about which markets to go after. … The one that really jumped out at us was replacing batteries in fork lift trucks with fuel cells. How big of a market could that be? Well, in the US there are over 1.5 million forklift trucks, and worldwide, the number is 6 million.

“We chose this market because it was a way to build a profitable business that would allow us to attract large customers in a relatively large market … as we continue to drive down our costs, we should be at parity with IC [internal combustion] engines in five to six years, at which point we’ll be ready to expand into other areas.”

With the new Amazon partnership, it looks like Plug Power is hitting that five- to six-year timeline for growing into other areas.

Fuel cell EVs hit the streets

Just a wild guess, but in a few years you could see Amazon introduce its own fuel cell EV for street use.

That may seem far-fetched, but consider that Google began dabbling in the related field of self-driving cars in 2015 and is now a burgeoning leader in the space. (That project has since been transferred to Google’s parent company, Alphabet.)

Apple is also inching into the self-driving car market.

Intel is another tech company putting feelers into the self-driving sector. Just last month it took a giant step with a $15.3 billion acquisition of the Israeli startup MobilEye.

Amazon will have to act fast if it wants to catch the train. Mainstream auto manufacturers are beginning to add fuel cell EVs to their rosters at a quickening pace.

Toyota was among the first to make a firm commitment to the field with its fuel cell Mirai. The company’s efforts include the all-important transition to sustainable hydrogen and support for growing the network of hydrogen fuel stations, along with a foray into the forklift sector.

Other companies introducing fuel cell EVs to the consumer market include GM and Honda.

So, who’s giving fuel cell EVs the stinkeye?

In response to the Amazon fuel cell forklift news, last week MIT Technology Review pumped out a brief article with this observation about the consumer market:

“Attempts to convince the public to embrace hydrogen-powered cars have flopped. While some automakers continue to push on with the vehicles, other are increasingly having second thoughts.”

Calling Debbie Downer!

On the brighter side, last December the journal IEEE Spectrum took an in-depth look at the potential for the fuel cell EV market to bust loose, penned by the director of the National Fuel Cell Research Center at the University of California, Irvine.

The article emphasized that both battery and fuel cell EVs will have a place in the zero-emission market of tomorrow, but fuel cells will give batteries a run for the money based on a number of advantages including range and refueling time.

The author, Scott Samuelson, also makes a good case that excess renewable energy can be used to manufacturing sustainable hydrogen for fuel cell vehicles.

That growing market could provide an important incentive for investors to accelerate the pace of renewable energy development.

Plant walls are sprouting inside all kinds of buildings

One installer offers his thoughts on why, and what works.

BY: JOHN CAULFIELD, BUILDING DESIGN + CONSTRUCTION

Living Wall 1

Clover Payments, a payments software startup, installed a 30×22-ft living wall in its office in Sunnyvale, Calif., a net-zero-energy building. The wall provides air filtration for the company’s tenants. Image: Courtesy Habitat Horticulture

Improving air quality and reducing stress are two things that more businesses and homeowners want from their working and living environments. Plant walls can answer both of those calls, and are becoming more common in the built environment.

For example, a syndicated article posted this week reports on plant walls that were installed in Goodyear’s headquarters in Akron, Ohio. Another reports on a tech startup in Minneapolis, When I Work, whose lobby features a plant wall and big windows. Inhabitat’s website includes recent stories on “plant paintings,” indoor moss walls, and a “nature filled” office in The Netherlands.

There’s also a raft of do-it-yourself living wall systems available at home-improvement stores and online.

Plant walls are so pervasive, in fact, “they are almost passé,” quips David Brenner, the 32-year-old founding principal and lead designer for San Francisco-based company Habitat Horticulture, which has been enlivening interior spaces with plant walls since 2010.

This year, Habitat Horticulture is on track to install 35 commercial plant walls and 15 residential walls, both numbers slightly up from 2016.

The benefits of plant walls are numerous: they provide cooling through a combination of shading, evapotranspiration (the water in a plant’s roots that evaporates through its leaves), and surface reflectivity. They bring nature into environmentally hostile urban areas, and serve as interior air filtration systems. They absorb sound. And the presence of plant walls has been shown to enhance worker productivity.

Brenner, who while attending California Polytechnic University studied horticultural science and psychology, accepts the research that finds a cause-and-effect relationship between plant walls and stress relief. He also believes that plant walls can be “restorative” to people exposed to them on a regular basis.

Brenner’s first exposure to plant walls was during an apprenticeship at the Royal Botanic Gardens in London. He started experimenting with “going vertically” with plants in 2007 when one of his college professors gave him access to a 30- by 20-foot greenhouse on campus.

“It’s surprising what you can grow on a wall,” says Brenner. But some plants are more conducive to living walls than others. Evergreen perennials such as geraniums, heuchera, and fuchsia are the best species because, he explains, they stay green, keep their leaves throughout the year, and tend to hug or compact against the wall. “They make for a good base or backdrop.”

Herbaceous perennial species, on the other hand, are not ideal, he continues, because they tend to lose their leaves in in winter. Brenner also stays away from plants that get “woody or stemmy” over time for his backdrops, as they tend to come off the wall. These are better used as accent plants for dimension, but not as the wall base.

Like any garden, the success or failure of a plant wall usually comes down to designing for performance within a specific micro climate, and the integrity of the wall’s irrigation system. And if a client wants a low-maintenance wall, that will limit which plants can used.

More important is the integrity of a wall’s irrigation system.

Habitat Horticulture is a full-service provider. It prepares detailed shop drawings that integrate the plant wall into the site’s architectural plans, and outline his company’s scope of work. His firm helps clients select the plant palette and composition (depending on the installation, panels are pregrown off-site or are planted on-site), builds the framework for the wall, commissions the controls for irrigation/fertigation and lighting, and installs and waterproofs the wall system and irrigation/circulation systems.

The only thing its associates and subs don’t handle is electrical and plumbing.

It also trains key personnel and management in ongoing maintenance and operations. (Most of Habitat Horticulture’s installations are followed up with weekly or monthly maintenance schedules.)

Plant walls aren’t that heavy; about 8 pounds per sf planted and irrigated. They can cost anywhere from $100 to $175 per sf, depending on the complexity of the system. That cost typically includes water recapture, and measuring pH levels, labor, and structural requirements.

As part of its efforts to earn the International Future Living Institute's Living Building Challenge certification for its 8,200-sf office in Sacramemto, Calif., the design firm Architectural Nexus irrigated its plant wall with repurposed greywater. Image: Architectural Nexus

As part of its efforts to earn the International Future Living Institute’s Living Building Challenge certification for its 8,200-sf office in Sacramemto, Calif., the design firm Architectural Nexus irrigated its plant wall with repurposed greywater. Image: Architectural Nexus

Clients sometimes turn to living walls as part of their strategy for their buildings to earn green certifications. For example, one of Brenner’s clients, the architectural design firm Architectural Nexus, renovated its new office in Sacramento to meet standards of the the Living Building Challenge Certification. A critical component of that building’s water filtration function is its living wall, which is irrigated by greywater repurposed from showers and sinks on-site. The wall can be viewed from all desk spaces throughout the office and from the street.

The San Francisco Museum of Modern Art also uses a plant wall Habitat installed to recycle water from its stormwater retention tank.

Four years ago, Habitat Horticulture installed three large plant wall and a living wine bar (live plants beneath a glass bar top) into DPR Construction’s office, which was the first certified net-zero energy building in San Francisco. Clover Payments, a payments software startup whose office is in a net-zero energy building that formerly was a racquetball facility, boasts a 30-ft-wide by 22-ft-high living wall that Habitat Horticulture installed in 2015, which helps provide cleaner air circulation for tenants.

More recently, Habitat Horticulture put in a plant wall at the main entrance of Westfield UTC, an open-air shopping mall in San Diego that is undergoing a $600 million renovation and expansion that will add 90 stories and 215,000 sf of retail space.

Healthcare could be Habitat Horticulture’s next frontier. Its portfolio includes a women’s health center. And Brenner says that some hospitals have “reached out” about adding a plant wall to their facilities. “Their biggest concern is infection control,” which he says can be managed by filters, testing and—to be on the safe side—injecting chlorine into the system.

February LEED Project Update

 

Julie

 

By Julie Lundin, Founder, LEED AP ID+C, NCIDQ, ASID
Director of Sustainable Interior Design for Emerald Skyline Corporation

 

 

Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. This building was formerly an auto garage that stood vacant for several years and was environmentally contaminated. Our renovation includes many sustainable features with the intent to obtain LEED certification from the USGBC.

LEED certified building boca raton floridaWe are getting close… to completing the build out of the interior of our project. I would like to share some of the design details and finishes that we have chosen. This building is an old auto garage so we are keeping the existing open floor plan of the main garage space with minimum interior walls being constructed.   The perimeter concrete walls will remain intact without the addition of a drywall finish. The walls have so much character; the imperfections on the concrete block that have accumulated over the years are too interesting to cover up. The walls will be painted and some of the imperfections enhanced with paint layering. The 3 overhead garage door openings have been replaced with impact windows and doors with the center opening now serving as the main entrance.   Since it is important to our design concept to retain as many of the auto garage components as possible we designed this elevation to keep the overhead doors in place behind the new glazing. Manual lift mechanisms have been installed to enable us to raise and lower the garage doors. We are using the roll down doors as large metal shades for both privacy and sun control since the openings are located on the south façade. Broad horizontal stripes will be painted on the interior of the overhead doors to add a bold touch to the space when lowered.

Due to the absence of interior walls we will have an open workspace. Open work spaces can offer important benefits. Our windows and doors are south facing which will allow natural light to filter through the entire office and provide views of the outside. Studies have shown that natural light and views of the outdoors provide occupants attributes of increased patience, productivity and physical health. Open work spaces can be beautiful but do lend themselves to noise issues that need to be addressed in order to function well. Since we are not constructing interior walls, the spaces and their usage will be delineated by furniture and lighting placement. “Floating” furniture and fixtures will create visual separation as well as help control sound transference. The existing concrete floor will remain but be polished and stained. Hard surfaces do a poor job of absorbing sound, so we will be using large area rugs to help minimize noise. The ceiling height is 12 ft. in this portion of the building and is a great architectural element, yet can also contribute to unwanted noise. Once we are in the building and experience the day to day noise levels, additional soft acoustical materials may need to be added. In addition, plants provide sound absorbing capabilities that can work just as effectively in an indoor environment as an outdoor setting as well as provide health benefits, including improving oxygen levels. We may even include a living wall!

Since this is a LEED registered project the specifications for the interior build out as well as exterior choices will contribute to the certification of the building. There are many products available that are not only attractive but have the attributes needed to create a beautiful and sustainable space. Some of our selections include:

  • Low flow toilets and faucets
  • Energy Star Appliances
  • Low VOC paints and finishes
  • Bamboo wood flooring
  • LED Lighting
  • Reuse of demolition materials
  • ChargePoint Electric Vehicle Charging Station
  • Water Collection Cistern
  • HVAC Condensation Drip Lines for exterior vegetation

Two of my favorite sustainable design choices are on the exterior of the building. A recycled glass mosaic of an abstract nautilus shell was created to adorn the south elevation. Metal “green screens” will be attached to the front apex of the building to create a green wall that will add beauty and provide shading to the stucco exterior.

There is still much to be accomplished but we look forward to being in our new space and sharing the completed details and photos with you.