Emerald Skyline Partners with Trex Fencing to Provide Technologically Advanced Eco-Friendly Composite Fencing Solutions

South Florida-based Emerald Skyline brings the strength of wood without the maintenance to commercial fencing.

“We haven’t felled one tree in the making of Trex high-performance composite fencing. Ever.”

June 9, 2017 from Emerald Skyline Corporation (www.emeraldskyline.com)

BOCA RATON, FL, June 9, 2017 – FOR IMMEDIATE RELEASE

Today, Emerald Skyline announced that it has partnered with Trex Fencing to provide revolutionary eco-friendly composite fencing solutions that offer privacy as well as durability for commercial and industrial properties. Together, we offer high performance and low maintenance privacy resolutions.

Trex Seclusions® are composed of 96% recycled wood and plastic and are manufactured in a facility that uses an eco-friendly processing method that eliminates the use of smoke stacks. In fact, the average 100-linear foot Trex composite fence contains 140,000 recycled plastic bags, making Trex one of the largest plastic bag recyclers in the United States.

This high-performance product never needs painting or staining, resists insect damage and won’t warp, rot, or splinter. The interlocking picket system installs quickly and easily and is strong enough to withstand winds up to 130 mph, passing the Miami/Dade wind load certification tests—making this an excellent choice for property owners in South Florida.

The durability and strength of this fencing system is only surpassed by its aesthetic beauty—available in three rich, natural colors that compliment any landscape. The interconnecting pickets have a clean, finished appearance on both sides with no structural boards visible inside or out. Additionally, this system offers true privacy with no gaps between pickets.

“We are always looking for ways to provide superior products and services to meet our clients sustainability and resiliency needs. We are pleased to add TREX Fencing to ChargePoint EV charging stations and Blue Pillar Internet of Things powered by Aurora to the quality products Emerald Skyline provides to our clients and customers.” reports Abraham Wien, LEED AP O+M, Director of Architecture & Environmental Design for Emerald Skyline.

For more than two decades, Trex has invented, defined, and perfected the composite deck category, becoming the world’s largest manufacturer of wood-alternative decking products. Never content to settle, they continue to make strides in outdoor engineering, melding innovation with environmental responsibility and beautiful form with powerful function. Trex is the first company to combine the durability of recycled plastic with the natural beauty of reclaimed wood.

To find out more information about Trex fencing solutions at your building or facility, please contact Abraham Wien at [email protected] or call us 305.424.8704.

Amazon Invests In Hydrogen Fuel Cell Electric Vehicles

By: Tina Casey on Triple Pundit

Amazon Hydrogen
Retail giant Amazon made waves with its recent forays into the entertainment field. And now it looks like the sprawling enterprise is about to pull the rug out from under hydrogen fuel cell skeptics.

Last week the company signed a deal with fuel cell innovator Plug Power for a new generation of zero-emission, hydrogen-powered electric forklifts and other equipment at its fulfillment centers.

Warehouse operations aren’t the most exciting sector in the auto industry, but the new Amazon forklift deal could make a big difference for the future of fuel cell electric cars. That market has been slow to take off, but the Amazon announcement adds momentum to the trend, helping to keep investors and auto manufacturers interested in pushing the technology forward.

A big deal for hydrogen fuel cell vehicles

Fuel cell vehicles run on electricity, like the now-familiar battery electric vehicles. Both types of EV emit no air pollutants. The main difference is that fuel cells generate electricity on-the-go through a chemical reaction. Battery EVs run on stored electricity.

That difference looms large in warehouse operations, where excess fat shaved from time and space translates into big bottom-line savings.

Battery-powered forklifts require relatively long charging times, and extra storage space for battery charging. In contrast, fuel cell forklifts can be fueled up in a matter of minutes, like an ordinary gas-powered vehicle, and they don’t require a “battery room” or other excess storage.

Hydrogen fuel cell forklifts have already begun to establish a solid track record in the logistics sector, and it looks like Amazon didn’t take much convincing.

The recent deal enables the company to acquire more than 55 million common shares in Plug Power in connection with a $600 million commitment from Amazon to purchase goods and services from Plug Power.

This could be just the beginning…

Amazon and Plug Power plan on a relatively modest start for the new venture, with a total of $70 million in buys this year for fuel cell equipment at selected fulfillment centers.

What’s really interesting about the deal is the “and services” part of the agreement. Forklifts appear to be just the start of a wide-ranging collaboration between the two companies, leading to other applications.

Here’s Plug Power CEO Andy Marsh enthusing over the potentials:

“This agreement is a tremendous opportunity for Plug Power to further innovate and grow while helping to support the work Amazon does to pick, pack and ship customer orders. … Our hydrogen fuel cell technology, comprehensive service network, and commitment to providing cost-savings for customers has enabled Plug Power to become a trusted partner to many in the industry and we are excited to begin working with Amazon.”

To put this in perspective, consider that just a few years ago it was difficult to get investors interested in fuel cell technology. The hydrogen economy dream was hitting a harsh reality — namely that the technology was not quite ready for prime time. Growing competition from battery-powered EVs also helped to shove hydrogen fuel cells down the ladder.

TriplePundit’s RP Siegel interviewed Marsh about the fuel cell dilemma in 2012, and the CEO made these observations about Plug Power, forklifts and the future of fuel cell EVs:

“With limited capital, we had to be selective in our decisions about which markets to go after. … The one that really jumped out at us was replacing batteries in fork lift trucks with fuel cells. How big of a market could that be? Well, in the US there are over 1.5 million forklift trucks, and worldwide, the number is 6 million.

“We chose this market because it was a way to build a profitable business that would allow us to attract large customers in a relatively large market … as we continue to drive down our costs, we should be at parity with IC [internal combustion] engines in five to six years, at which point we’ll be ready to expand into other areas.”

With the new Amazon partnership, it looks like Plug Power is hitting that five- to six-year timeline for growing into other areas.

Fuel cell EVs hit the streets

Just a wild guess, but in a few years you could see Amazon introduce its own fuel cell EV for street use.

That may seem far-fetched, but consider that Google began dabbling in the related field of self-driving cars in 2015 and is now a burgeoning leader in the space. (That project has since been transferred to Google’s parent company, Alphabet.)

Apple is also inching into the self-driving car market.

Intel is another tech company putting feelers into the self-driving sector. Just last month it took a giant step with a $15.3 billion acquisition of the Israeli startup MobilEye.

Amazon will have to act fast if it wants to catch the train. Mainstream auto manufacturers are beginning to add fuel cell EVs to their rosters at a quickening pace.

Toyota was among the first to make a firm commitment to the field with its fuel cell Mirai. The company’s efforts include the all-important transition to sustainable hydrogen and support for growing the network of hydrogen fuel stations, along with a foray into the forklift sector.

Other companies introducing fuel cell EVs to the consumer market include GM and Honda.

So, who’s giving fuel cell EVs the stinkeye?

In response to the Amazon fuel cell forklift news, last week MIT Technology Review pumped out a brief article with this observation about the consumer market:

“Attempts to convince the public to embrace hydrogen-powered cars have flopped. While some automakers continue to push on with the vehicles, other are increasingly having second thoughts.”

Calling Debbie Downer!

On the brighter side, last December the journal IEEE Spectrum took an in-depth look at the potential for the fuel cell EV market to bust loose, penned by the director of the National Fuel Cell Research Center at the University of California, Irvine.

The article emphasized that both battery and fuel cell EVs will have a place in the zero-emission market of tomorrow, but fuel cells will give batteries a run for the money based on a number of advantages including range and refueling time.

The author, Scott Samuelson, also makes a good case that excess renewable energy can be used to manufacturing sustainable hydrogen for fuel cell vehicles.

That growing market could provide an important incentive for investors to accelerate the pace of renewable energy development.

Plant walls are sprouting inside all kinds of buildings

One installer offers his thoughts on why, and what works.

BY: JOHN CAULFIELD, BUILDING DESIGN + CONSTRUCTION

Living Wall 1

Clover Payments, a payments software startup, installed a 30×22-ft living wall in its office in Sunnyvale, Calif., a net-zero-energy building. The wall provides air filtration for the company’s tenants. Image: Courtesy Habitat Horticulture

Improving air quality and reducing stress are two things that more businesses and homeowners want from their working and living environments. Plant walls can answer both of those calls, and are becoming more common in the built environment.

For example, a syndicated article posted this week reports on plant walls that were installed in Goodyear’s headquarters in Akron, Ohio. Another reports on a tech startup in Minneapolis, When I Work, whose lobby features a plant wall and big windows. Inhabitat’s website includes recent stories on “plant paintings,” indoor moss walls, and a “nature filled” office in The Netherlands.

There’s also a raft of do-it-yourself living wall systems available at home-improvement stores and online.

Plant walls are so pervasive, in fact, “they are almost passé,” quips David Brenner, the 32-year-old founding principal and lead designer for San Francisco-based company Habitat Horticulture, which has been enlivening interior spaces with plant walls since 2010.

This year, Habitat Horticulture is on track to install 35 commercial plant walls and 15 residential walls, both numbers slightly up from 2016.

The benefits of plant walls are numerous: they provide cooling through a combination of shading, evapotranspiration (the water in a plant’s roots that evaporates through its leaves), and surface reflectivity. They bring nature into environmentally hostile urban areas, and serve as interior air filtration systems. They absorb sound. And the presence of plant walls has been shown to enhance worker productivity.

Brenner, who while attending California Polytechnic University studied horticultural science and psychology, accepts the research that finds a cause-and-effect relationship between plant walls and stress relief. He also believes that plant walls can be “restorative” to people exposed to them on a regular basis.

Brenner’s first exposure to plant walls was during an apprenticeship at the Royal Botanic Gardens in London. He started experimenting with “going vertically” with plants in 2007 when one of his college professors gave him access to a 30- by 20-foot greenhouse on campus.

“It’s surprising what you can grow on a wall,” says Brenner. But some plants are more conducive to living walls than others. Evergreen perennials such as geraniums, heuchera, and fuchsia are the best species because, he explains, they stay green, keep their leaves throughout the year, and tend to hug or compact against the wall. “They make for a good base or backdrop.”

Herbaceous perennial species, on the other hand, are not ideal, he continues, because they tend to lose their leaves in in winter. Brenner also stays away from plants that get “woody or stemmy” over time for his backdrops, as they tend to come off the wall. These are better used as accent plants for dimension, but not as the wall base.

Like any garden, the success or failure of a plant wall usually comes down to designing for performance within a specific micro climate, and the integrity of the wall’s irrigation system. And if a client wants a low-maintenance wall, that will limit which plants can used.

More important is the integrity of a wall’s irrigation system.

Habitat Horticulture is a full-service provider. It prepares detailed shop drawings that integrate the plant wall into the site’s architectural plans, and outline his company’s scope of work. His firm helps clients select the plant palette and composition (depending on the installation, panels are pregrown off-site or are planted on-site), builds the framework for the wall, commissions the controls for irrigation/fertigation and lighting, and installs and waterproofs the wall system and irrigation/circulation systems.

The only thing its associates and subs don’t handle is electrical and plumbing.

It also trains key personnel and management in ongoing maintenance and operations. (Most of Habitat Horticulture’s installations are followed up with weekly or monthly maintenance schedules.)

Plant walls aren’t that heavy; about 8 pounds per sf planted and irrigated. They can cost anywhere from $100 to $175 per sf, depending on the complexity of the system. That cost typically includes water recapture, and measuring pH levels, labor, and structural requirements.

As part of its efforts to earn the International Future Living Institute's Living Building Challenge certification for its 8,200-sf office in Sacramemto, Calif., the design firm Architectural Nexus irrigated its plant wall with repurposed greywater. Image: Architectural Nexus

As part of its efforts to earn the International Future Living Institute’s Living Building Challenge certification for its 8,200-sf office in Sacramemto, Calif., the design firm Architectural Nexus irrigated its plant wall with repurposed greywater. Image: Architectural Nexus

Clients sometimes turn to living walls as part of their strategy for their buildings to earn green certifications. For example, one of Brenner’s clients, the architectural design firm Architectural Nexus, renovated its new office in Sacramento to meet standards of the the Living Building Challenge Certification. A critical component of that building’s water filtration function is its living wall, which is irrigated by greywater repurposed from showers and sinks on-site. The wall can be viewed from all desk spaces throughout the office and from the street.

The San Francisco Museum of Modern Art also uses a plant wall Habitat installed to recycle water from its stormwater retention tank.

Four years ago, Habitat Horticulture installed three large plant wall and a living wine bar (live plants beneath a glass bar top) into DPR Construction’s office, which was the first certified net-zero energy building in San Francisco. Clover Payments, a payments software startup whose office is in a net-zero energy building that formerly was a racquetball facility, boasts a 30-ft-wide by 22-ft-high living wall that Habitat Horticulture installed in 2015, which helps provide cleaner air circulation for tenants.

More recently, Habitat Horticulture put in a plant wall at the main entrance of Westfield UTC, an open-air shopping mall in San Diego that is undergoing a $600 million renovation and expansion that will add 90 stories and 215,000 sf of retail space.

Healthcare could be Habitat Horticulture’s next frontier. Its portfolio includes a women’s health center. And Brenner says that some hospitals have “reached out” about adding a plant wall to their facilities. “Their biggest concern is infection control,” which he says can be managed by filters, testing and—to be on the safe side—injecting chlorine into the system.

February LEED Project Update

 

Julie

 

By Julie Lundin, Founder, LEED AP ID+C, NCIDQ, ASID
Director of Sustainable Interior Design for Emerald Skyline Corporation

 

 

Emerald Skyline Corporation in conjunction with Golden Spiral Design, is designing, renovating and repurposing an unoccupied industrial building located in Boca Raton, FL. This building was formerly an auto garage that stood vacant for several years and was environmentally contaminated. Our renovation includes many sustainable features with the intent to obtain LEED certification from the USGBC.

LEED certified building boca raton floridaWe are getting close… to completing the build out of the interior of our project. I would like to share some of the design details and finishes that we have chosen. This building is an old auto garage so we are keeping the existing open floor plan of the main garage space with minimum interior walls being constructed.   The perimeter concrete walls will remain intact without the addition of a drywall finish. The walls have so much character; the imperfections on the concrete block that have accumulated over the years are too interesting to cover up. The walls will be painted and some of the imperfections enhanced with paint layering. The 3 overhead garage door openings have been replaced with impact windows and doors with the center opening now serving as the main entrance.   Since it is important to our design concept to retain as many of the auto garage components as possible we designed this elevation to keep the overhead doors in place behind the new glazing. Manual lift mechanisms have been installed to enable us to raise and lower the garage doors. We are using the roll down doors as large metal shades for both privacy and sun control since the openings are located on the south façade. Broad horizontal stripes will be painted on the interior of the overhead doors to add a bold touch to the space when lowered.

Due to the absence of interior walls we will have an open workspace. Open work spaces can offer important benefits. Our windows and doors are south facing which will allow natural light to filter through the entire office and provide views of the outside. Studies have shown that natural light and views of the outdoors provide occupants attributes of increased patience, productivity and physical health. Open work spaces can be beautiful but do lend themselves to noise issues that need to be addressed in order to function well. Since we are not constructing interior walls, the spaces and their usage will be delineated by furniture and lighting placement. “Floating” furniture and fixtures will create visual separation as well as help control sound transference. The existing concrete floor will remain but be polished and stained. Hard surfaces do a poor job of absorbing sound, so we will be using large area rugs to help minimize noise. The ceiling height is 12 ft. in this portion of the building and is a great architectural element, yet can also contribute to unwanted noise. Once we are in the building and experience the day to day noise levels, additional soft acoustical materials may need to be added. In addition, plants provide sound absorbing capabilities that can work just as effectively in an indoor environment as an outdoor setting as well as provide health benefits, including improving oxygen levels. We may even include a living wall!

Since this is a LEED registered project the specifications for the interior build out as well as exterior choices will contribute to the certification of the building. There are many products available that are not only attractive but have the attributes needed to create a beautiful and sustainable space. Some of our selections include:

  • Low flow toilets and faucets
  • Energy Star Appliances
  • Low VOC paints and finishes
  • Bamboo wood flooring
  • LED Lighting
  • Reuse of demolition materials
  • ChargePoint Electric Vehicle Charging Station
  • Water Collection Cistern
  • HVAC Condensation Drip Lines for exterior vegetation

Two of my favorite sustainable design choices are on the exterior of the building. A recycled glass mosaic of an abstract nautilus shell was created to adorn the south elevation. Metal “green screens” will be attached to the front apex of the building to create a green wall that will add beauty and provide shading to the stucco exterior.

There is still much to be accomplished but we look forward to being in our new space and sharing the completed details and photos with you.

 

3 tips for designing workplaces that support culture, brand, and community

An authentic culture cannot be forced but can be encouraged and supported.

By Hakee Chang, Denise Darrin and Lisa Weeks, Building Design & Construction, 2/2/2017

View the original article here.

workplace culture sustainabilityThe workplace has evolved exponentially over the past decade, from large, uniform workstations and offices to efficient open plans and auxiliary areas. Technology has advanced from desktop computers and landlines, to laptops, and mobile apps. Innovation in technology has driven an increase in employees’ productivity and efficiency, and innovation in design has strategically followed.

However, effective and engaging workplace design doesn’t stop with a response to technological and real estate needs. It must go further, supporting the creation and integration of a company’s culture, brand identity, and overall community.

CURATED CULTURE

The most integrated cultures are co-created by leaders and teams. They are shared, organic, and capable of evolving. An authentic culture cannot be forced, but can be encouraged and supported. Without direct participation and buy-in from those involved, a company’s culture can end up a “mission statement on business card” or a “tagline on a wall” – noticed upon move-in, but quickly forgotten thereafter.

We have been fortunate to see these principles in action with a number of our key clients. In particular, technology companies are dealing with cultural change on almost a daily basis as a result of rapid growth. For example, one financial technology client has an ever-adapting nature and willingness to learn. Their leadership embodies an approach that has allowed exceptionally talented people of various backgrounds to come together with a unified and understood purpose.

The ethos of any company is the driving force. People connect over shared stories and experiences. Our job as workplace designers is to clearly understand the experiences of each and every client. What are their company’s particular drivers and values? How we can create a space that reflects and enhances those values and support the natural curation of their culture?

 BUILDING BRAND AWARENESS

Understanding a client’s brand in the context of external perception and internal practices are two crucial elements to designing a meaningful workplace. Through visioning and programming interviews, we find that office staff often seeks their work environment to “walk the talk.” It has to be authentic and reflect the reasons why they joined the company, and offer opportunities to highlight how their contributions matter.

As a first step, we typically will create overlapping layers of an “experience map” to begin building a workplace design that contributes to the client’s ethos. We map out various use scenarios through points of view, such as anticipating the tour our client may give to a candidate or business partners, an all-hands meeting, or an event for external community engagement. These maps overlap with curated moments where people can connect to individual stories or testimonials that are both inspirational and aspirational.

We recently worked with a technology company whose focus is on physical activity and health, and we incorporated design elements to encourage movement. For example, we designed meeting spaces with treadmills, social and collaboration spaces along popular walking routes, and adaptable spaces with natural light, comfortable temperatures, and views. Since the company offices are spread between buildings within a dense urban location, we leveraged the city as a vital active conduit to tie both the company’s brand and connect staff with their customer base. Allowing workflow through the neighborhood created a first-hand brand awareness that extends beyond the interior office environment.

COMMUNITY GUIDELINES

Technology has allowed the traditional office to transform into a dynamic working environment. The workplace is no longer built on “my” office or “my” desk, but has developed into “our” space: a place for community.

Technology has provided flexibility, choice, and options to employees – giving everyone the ability to decide where, how, and when they work. Yet, the reduction of individual workspace has created a need for smaller neighborhoods within the larger community. To help alleviate the possibility of feeling “crowded” it is essential to effectively distribute varied opportunities for different work styles, while providing adequate support and shared spaces.

All of these factors have prescribed that companies establish community guidelines, the rules of engagement for the workplace. These guidelines address issues from etiquette to functionality.

Our Minneapolis office recently relocated and moved to an activity-based “free address” work environment with no assigned seats to untether talent from desks and empower employees with choice. Etiquette guidelines were created to assist in this new environment, including:

  1. Individuals are expected to clear their workspace of all materials if out of the office for more than four hours, and when they leave at the end of the day, so the location can host another user.
  2. Meeting rooms have different behaviors and etiquette associated with them. For instance, huddle rooms are non-reservable and dedicated to more informal, spontaneous meetings or calls.
  3. Project storage, personal storage, and office supplies have centralized home bases outside of the immediate workstations to prevent duplication and waste.

As an overall goal, the new workspace recognizes the value of a variety of workstyles: from large group meetings to spontaneous interactions to individual heads-down work. The studio supports this spectrum of work with project rooms, huddle rooms, pin-up spaces, and focus rooms.

Community guidelines present the parameters for employees to respect each other and their work places and to follow the “Platinum Rule”: treat others the way they want to be treated.

EMERALD SKYLINE PARTNERS WITH BLUE PILLAR TO PROVIDE THE ENERGY NETWORK OF THINGS POWERED BY AURORA

South Florida-based Emerald Skyline brings 21st Century technology to energy management.

“Over 75% of businesses say that Internet of Things (IoT) is critical to their future success, and nearly half of adopters are using IoT to support large-scale business transformation.” Vodafone IoT Barometer 2016

January 10, 2017 from Emerald Skyline Corporation (www.emeraldskyline.com)

BOCA RATON, FL, January 10, 2017 – FOR IMMEDIATE RELEASE

Today, Emerald Skyline announced that it has partnered with Blue Pillar, Inc. to provide the Energy Network of Things powered by Aurora for hospitals, office buildings, retail centers, industrial and municipal facilities. Together, we’re transforming the energy industry by developing intelligent energy management solutions to help facility managers achieve their energy resiliency, efficiency and sustainability goals.

Blue Pillar connects any energy “thing” (i.e., any asset that consumes, switches or measures electricity — including meters (water, gas and electric), generators, fuel tanks, automatic transfer switches, chillers, boilers, HVAC control panels, CHP, solar panels, EV chargers and just about any other intelligent mechanical equipment you can think of — into our Energy Network of Things platform.
Blue Pillar’s Aurora Energy Network of Things™ platform has an architecture that is open at the device and application layer, so it is perfectly positioned to solve the energy management data crisis. In addition to being open and providing ubiquitous connectivity, we also offer dozens of energy management applications the same way that a calculator or calendar app would be offered on your Apple or Android phone.

“As a sustainability and resiliency consulting and LEED project management firm, this partnership enables us to provide the industry’s most flexible platform for connecting and managing energy devices,” reports Abraham Wien, LEED AP O+M, Director of Architecture & Environmental Design for Emerald Skyline. “We are always looking for ways to provide superior products and services to meet our clients sustainability and resiliency needs and Blue Pillar is an IoT provider that we are proud to offer to the market.”

For nearly a decade, Blue Pillar has connected thousands of energy assets at a wide variety of deployment sites from hospitals and energy service providers to data centers and higher education campuses enabling them to work 75% faster and realize 30% more affordability.

To find out more information about the employment of the Blue Pillar IoT for building energy systems in your building or facility and unleash the power of real-time data that strengthens your infrastructure and improves not only your efficiency but provides opportunities for differentiation and even new revenue sources while providing for a greener tomorrow, please contact Abraham Wien at [email protected] or call us 305.424.8704.

10 companies moving up in smart buildings

By Heather Clancy
View the original article here.

smart-buildingsThe phrase “Internet of things” has become a convenient catch-all for all manner of technologies that carry this common characteristic — they’re capable of sharing their data not only with each other but also with other information technology systems, enabling far deeper insights into how well they’re running and what’s going on around them.

In 2015, more than 15.4 billion gadgets fell into this uber category, according to data from market research firm IHS. That number could double by the end of 2020, and then again by the end of 2025. These “things” can be installed virtually everywhere, from factory floors to streetlights to water pipes — cities alone could spend at least $20 billion on sensor networks by 2020.

But one area to watch closely from sustainability perspective will be technologies related to buildings, both commercial and residential. Think of it this way: the Internet of things (aka IoT) is crucial for broader adoption of smart buildings. That will have big implications for how companies handle energy management. And for the next three years at least, IoT will be more pervasive in smart commercial buildings than anywhere else, suggests consulting firm Deloitte.

Things are certainly pointing up. Revenue related to installations of sensor-equipped lighting, climate control equipment, thermostats, and other automation systems could quadruple over the next decade to about $732 billion, predicts Navigant Research in a report published in early December.

“Connected or IoT devices in commercial buildings or homes enable a variety of applications and provide benefits related to automation, convenience, and, of course, energy efficiency — and these benefits are starting to resonate among building managers, homeowners, and even renters,” said Navigant principal research analyst Neil Strother.

More evidence that interest becoming more serious: ABI Research predicts that revenue related to IoT-enabled smart building technologies should grow to more than $8 billion in 2020, compared with just $625 million last year. The bulk of that money will be related to smart lighting and “intuitive” HVAC control systems, according to the research firm.

“IoT platforms such as GE’s Predix, IBM’s Watson, and SAP’s HANA, in collaboration with facility service providers, like CBRE, ISS World, and ENGIE, are gradually creating inroads by integrating multiple building automation systems to deliver a unified facilities management solution,” said ABI analyst Adarsh Krishnan. “the ‘make or buy’ dilemma of whether to develop the solution in-house or collaborate with a third-party technology vendor.”

What makes the transformation so hard, of course, is the long life expectancy of heating, ventilation, and air-conditioning systems — usually at least 15 years, and counting.

But leading manufacturers are working diligently to instrument and automate their systems through IoT hardware and software, so that commercial buildings can respond better to environmental stimuli or a company’s energy efficiency policies. Here’s a cheat sheet of 10 big players to watch closely in the upcoming year (presented alphabetically).

Cisco

Part of San Jose, California-based networking giant Cisco’s “Internet of Everything” mantra is an energy efficiency concept it started pushing more aggressively in early 2016 called the “Digital Ceiling.”

The idea is to consolidate smart lighting networks and other Internet-connected devices into a centralized dashboard that can be controlled via a smartphone application. The system includes smart lighting that doesn’t require a separate electricity source—they are powered by the Ethernet network itself. Cisco lined up an impressive list of partners, including LED lighting pioneer Cree, to help evangelize the idea.

Hitachi

There’s been plenty of buzz about the 106-year-old Japanese conglomerate’s compelling business model for microgrids. Back in May, however, Hitachi began touting its IoT strategy, which is based on a technology called Lumada.

This platform will be relevant across a broad range of applications not just smart buildings, including connected vehicles, although details about the technology are just starting to emerge. “While it is still very early days in the IoT platform market, the landscape is crowded, making it difficult for new vendors to differentiate themselves,” said Christian Renaud, an analyst for 451 Research. “Hitachi’s extensive expertise in operational technology and IT gives them a unique understand of the fundamental requirements to build and deploy IoT solutions at scale.”

Honeywell

Honeywell’s IoT strategy already touches about 10 million smart buildings worldwide. One of the Morris Plains, N.J.-based company’s latest forays is a mobile app — which sounds similar to technology from startup Comfy — that lets building occupants report issues with heating or cooling. Basically, people become “sensors” alongside digital counterparts such as sensor. “Occupant engagement is an increasingly important aspect of intelligent building solutions,” said Navigant analyst Casey Talon.

IBM

The tech giant has been involved with a myriad of smart-this-and-that initiatives related to its Smarter Planet campaign. Now, IBM, based in Armonk, N.Y., is putting the firepower of its Watson artificial intelligence and data analysis software behind its projects that make buildings smarter.

One of its biggest customers for the technology is ISS, a facilities management company that will use Watson in more than 25,000 buildings to assess readings from sensors on windows, doors, chairs, food dispensers, air conditioning systems and so on. The sensors on doors, for example, can help commercial kitchens within these facilities figure out how many meals to cook for lunch, helping cut back on food waste. “Putting a ‘human touch’ in buildings helps to increase employee productivity, decrease absenteeism, and makes a better impression on visitors,” said ISS CEO Jeff Gravenhorst.

Deals beween mammoth players in building automation and connectivity, such as the one between Johnson Controls and Cisco, are becoming more common.

Johnson Controls

Already a big proponent of the push to net-zero buildings and the idea that buildings should “talk” to each other, $37.7 billion Johnson Controls became an even larger force in IoT technologies when the Milwaukee, Wisconsin, company merged in September with security services firm Tyco. Johnson Controls allied with IBM on the smarter building cause back in 2010, and moved closer to Cisco earlier this year (it’s one of several companies supporting the Digital Ceiling framework).

Legrand

The French-born electrical component manufacturer, which has been taking a deeper interest in sustainable business practices across its own operations, launched its IoT initiative dubbed ELIOT in November.

Legrand sees its technology as the glue tying together automation technologies from the likes of Samsung and Cisco. The effort even supports Alexa, Amazon’s voice-controlled home automation gadget, which is being engineered to handle tasks such as adjusting lights or temperatures. It helps that $4.5 billion Legrand’s sales for connected devices were more than $350 million in 2015, up 34 percent. “Legrand is built in, not simply plugged in,” said Stephen Schoffstall, chief marketing officer for the company. “This distinction is critical when you consider that ELIOT is an expression of Legrand’s determination to evolve the experience of living, working, and operating in buildings — and to minimize the impact those buildings will have on the environment.”

Panasonic

The Japanese company is already a well-known player in green building technologies such as energy-efficient lighting, refrigeration, air conditioning, heating and renewable energy. Like its biggest peers and competitors, it is prioritizing investments that use data from these systems to help them run ever-more efficiently. One example is its agreement with Germany’s Schneider Electric, announced in October, under with the two companies are collaborating on wireless technology that connects Schneider’s building management system with Panasonic HVAC systems that use variable refrigerant flow (VRF) technology. Translation: the amount of energy they require can be adjusted more finely than previous generations of the equipment.

“By combining the power of building management with cutting-edge VRF technology, we are able to help our customers further reduce capital and operating expenditures and reach new levels of sustainability,” said Toshiyuki Takagi, executive officer of Panasonic Corp., and president of Panasonic Air-Conditioner.

Schneider Electric

The energy management specialist, which has been especially vocal in the past about smart cities projects, overhauled its smart building product line called EcoStruxure in late November. You might think of Schneider first as a hardware company, but its partnership with cloud services giant Microsoft is focused on helping companies analyze operational data more efficiently. Its aforementioned partnership with Panasonic is also powerful.

Siemens

An emerging force in commercial and community microgrids, German conglomerate Siemens is also shoring up its IoT expertise. During 2016, it announced separate partnerships with IBM and consulting firm Capgemini to build even more credibility. The IBM pact centers on creating a cloud service to help corporate real estate managers gain access to energy efficiency metrics for their facility portfolios. The deal with Capgemini has a similar goal.

Verdigris Technologies

This San Francisco upstart is using artificial intelligence to collect information from a building’s electrical panels and then analyze these “fingerprints” for opportunity to optimize settings and to predict possible maintenance issues that could boost power consumption.

Verdigris raised $6.7 million in an October venture capital round that was led by contract manufacturer Jabil and Verizon Ventures, bringing total funding to about $15 million. The company is doing well helping companies in the hospitality sector reduce electricity usage; Hyatt, Marriott, and Starwood Hotels are all customers.

The electric car market is growing 10 times faster than its dirty gasoline equivalent

There will be two million electric cars on the road by the end of 2016.

Written by: Alejandro Dávila Fragoso
View the original article on ThinkProgress

evDespite low oil prices, plug-in electric vehicles (EV) are charging forward worldwide, with more than 2 million expected to be on the roads by the end of 2016, according to recent market figures.

Around 312,000 plug-in electric cars were sold during the first half of 2016, according to analysts at EV Volumes — a nearly 50 percent increase over the first half of 2015.

The rise in sales is attributed to a growing Chinese market, followed by sales in Europe and the United States, where Tesla Motors Co. is now dominating the luxury sedan market, according to recent reports.

And though EVs are a fraction of the global vehicle stock — less than 1 percent— the industry is growing about 10 times faster than the traditional vehicle market.

“What we have seen over the past few months is a complete culture change.”

This increase could be significant for public health and the environment in the United States and elsewhere. In the United States, transportation is now topping the electricity sector as the largest source of carbon dioxide emissions, a key factor in human-caused climate change.

Moreover, fossil-fuel vehicles are known to be major contributors of air pollution associated with asthma, allergies, cancer, heart conditions, and premature death, according to the United Nations. And while EVs can reduce air pollution in cities, they also mean less oil extraction, which comes with air pollution and environmental issues of its own.

Right now, EVs’ presence is too small to affect fuel consumption and greenhouse gas emissions from the transportation sector, according to a 2016 International Energy Agency (IEA) report. However, the IEA noted this could soon change, with countries like Norway, the Netherlands, and China boldly turning to EVs as they aim to slash emissions in the next few years.

Norway, a small but rich nation, is now leading the world in EVs. One in three new cars sold there is electric, and that proportion is increasing due to tax breaks and investment in charging infrastructure, The Guardian reported. The Netherlands is following closely, since, like Norway, it wants to phase-out fossil-fuel cars within the next decade. According to a Transport & Environment report released Thursday, EV sales in Europe doubled last year to 145,000.

In China, the rise of EVs is noteworthy, too. One in four electric cars sold worldwide is sold in China. “What we have seen over the past few months is a complete culture change,” said Greg Archer, clean vehicles director at Transport & Environment.

This growth is expected to continue around the world. Some studies suggest that by 2030, EVs could account for two-thirds of all cars in wealthy cities like London and Singapore. That is likely to happen thanks to stricter emissions rules, consumer demand, and falling technology costs.

Batteries, a major factor behind high EV costs, are getting 20 percent cheaper every year, according to EV Volumes.


The State of the Electric Car Market in 4 Charts and Graphs

, LEAD POLICY ANALYST, CLEAN VEHICLES
View the original article here.
I’m guessing that over the past 3 months (or more), your news feed has been dominated by election-related stories. So you may have missed the recent good news about the electric vehicle (EV) market in the United States. To bring you up to speed (and provide a brief break from election hullaballoo) here are 4 graphs that explain what’s been happening in the world of EVs.

Graph 1 : EV sales are charging ahead (see what I did there?)

EV sales in the US just hit a new record. Over 45,000 EVs were sold in the third quarter of 2016, up more than 60 percent from the same time a year ago.

2

The sales increase can be partly attributed to the second generation Chevy Volt, which became widely available in March 2016 and includes 50 miles of electric range along with a backup gasoline engine. Plug-in hybrid electric vehicles (PHEVs) like the Volt allow many drivers to do all of their normal daily driving purely on electricity, without any fear of running out of juice because they can just fill up with gas if the batteries are drained.

Confused about the difference between PHEVs like the Volt and battery electric vehicles (BEVs) like the Nissan LEAF? Check out this explainer post.

Graph 2 : EVs are selling despite lower oil prices

EV sales reached this new high-water mark despite spotty availability of EV models across most of the country and continued lower-than-average oil prices, a factor often cited as hampering EV sales.

3

Low gas prices do take some of the spotlight off of EVs, despite their lower operating costs compared to gas-powered vehicles. But even with gas hovering around $2.30 a gallon, driving on electricity remains cheaper.

The US Department of Energy estimates that driving on electricity is like paying $1.15 per gallon of gas, and electricity prices have historically been much more stable and predictable than gasoline.

Graph 3: Sales would be even higher if they were more widely available

Generally speaking, EVs are not readily available outside of California. The current lack of availability is due, in part, to the fact that a major policy pushing automakers to offer EVs—theCalifornia Zero Emission Vehicle Program—does not require automakers to sell EVs outside of California (yet).

4

The requirements of the California program are set to expand to 9 additional states (ME, CT, VT, NY, MA, RI, MD, NJ, OR) in 2018, which together made up 28 percent of combined vehicle sales in 2015. So, the expanded role of policy pushing automakers to sell EVs in major vehicle markets outside of California will likely accelerate aggregate EV sales over the next couple years.

Graph 4 : More automakers are getting in the EV game

2017 should be an exciting year for EVs. Chevy is about to drop the Bolt, an all-electric car with over 200 miles of range and a price tag of around $30,000 after the federal tax credit. Toyota is releasing a new Plug-in Prius, now called Prius Prime, and recent pricing announcements put the cost similar to the price of existing Prius models.

Also in 2017, Tesla is aiming to ship their much-anticipated Model 3, and Hyundai will launch their Ioniq series that will include several electric drive train options. In 2018, Audi is slated to launch an all-electric 300-mile range SUV. Check this post for more detail on other EVs coming to showrooms soon.

5

Overall, more EV options mean more choices for drivers to choose a vehicle that is cheaper and cleaner than a comparable gasoline model (and fun to drive). Though the EV market still has to overcome some hurdles , the state of play right now provides real reason to be optimistic about where EVs are headed.

The Importance of an Energy Assessment for Commercial Buildings

By John Losey, Owner and Founder The BP Group, Energy Manager Today, 9/1/2016

View the original article here.

Building owners and property managers that take on the responsibility of limiting energy consumption can be looked at as environmental leaders. While energy management adds extra tasks to everyday lists, the benefits outweigh the time and money spent, which is usually returned in savings.

There are numerous areas to take into consideration when it comes to commercial buildings, and being that commercial buildings are generally large, the impact can be large as well. These areas include the HVAC system, chillers, windows, lighting, electrical equipment, and any other factors that may be contributing to the building’s energy consumption.

While there are various ways to be involved with bettering the environment outside of where you live and work, starting in a place that you occupy everyday has the potential of having long term results if the actions are carried through as often as you’re there.

Consider creating an outlined approach for managing the building’s energy with these areas in mind:

Identify Sustainable Alternatives Where Energy is Being Used:

  • Are there upgraded, energy-efficient versions of the equipment you can be using instead?
  • Could you use different settings on the equipment?

Assess the Purpose of Every Area:

  • Is the lighting being utilized in every room?
  • Is the size of the HVAC system an adequate fit for the building and its purpose?

Evaluate Maintenance Plans:

  • How frequent are the utilities maintained?
  • Do the maintenance technicians practice with energy efficiency in mind?

Look for Possible Areas of Energy Loss:

  • Are the building’s windows sealed properly?
  • Is the equipment too old for efficient functioning?

These are questions you should ask yourself if you’re trying to assess energy consumption and find that alternative route to save not only energy, but money as well.

After addressing these questions, you may find yourself planning to make some changes. Here is the information you should know for doing so:

Energy Efficient Equipment: Whether it’s the HVAC system, the utility lighting or the other various appliances being used in the building, there are energy-efficient options to consider. This includes ones with ENERGY STAR ratings, which match the standards set by the government.

Settings & Thermostats: Just by being knowledgeable about specific settings and the different types of available thermostats, you can be saving a substantial amount of energy. Depending on the type of building and the function(s) of the building, settings can be applied to use less energy in an area that doesn’t need it. The same idea goes for thermostats. Programmable thermostats allow for precise regulation of energy consumption. This means making sure the temperatures aren’t set too high or too low when the building or part of a building isn’t in use. Programmable thermostats keep the location comfortable when needed, but help save energy when it’s not.

Lighting: It’s better to be the building that turns its lights off when it isn’t being used, than a building that keeps them on 24/7. It’s also important to consider energy-saving types, such as LED or solar. With these kinds, you can also invest in timers and dimmers.

HVAC Size: According to ENERGY STAR, “at least 25% of all rooftop HVAC units are oversized, resulting in increased energy costs and equipment wear.” Determining what size HVAC system the building needs is a job for a professional technician, and it’s an important part of the overall building assessment.

Maintenance: Building maintenance is not only important for saving energy and money, it’s important for the building’s health and those occupying it. This includes electrical, HVAC, plumbing, etc. While there are tasks you can manage on your own, there are specific tasks that are recommended for the hands of a professional technician. Whatever the area, it’s important to have maintenance scheduled. Having a definite schedule helps to prevent sudden issues, which prevents sudden energy loss as well.

Technicians: Certain companies know the importance of offering energy-efficient services. This means that they practice in ways that are beneficial for the environment. Research the companies in your area and look for the ways they’re working to save energy and you money. This is an important quality, and more companies are beginning to realize that.

Windows, Replacements & Other Areas of Loss: Other ways to assess energy is by looking into the not so obvious. This includes windows, old systems that don’t show signs of stress until it’s too late, and too many running appliances and pieces of equipment causing heat. If windows aren’t sealed properly, especially in summer and winter, your HVAC system may be working harder than it has to in order to reach the desired temperature. Leaks of hot or cold air will cause this. Another concern are systems that don’t show signs of stress. If the system is old, it’s definitely recommended to have it maintained, even if you think otherwise. The inside has moving parts that may be working very hard to keep it running, and the machine giving out might be the first sign if you wait too long. Lastly, there may be too much heat. Too many heat producing appliances or pieces of equipment may cause the air conditioner to work harder, similar to an open window on a hot summer day.

Commercial buildings don’t function alone, they need the help of energy, and all building owners and property managers can help conserve it.

John Losey is the owner and founder of The BP Group, a leader in Commercial HVAC Services

Solar Technology Update: New Device Does the Work of Plants

KG ResizeBy Kendall Gillen, LEED Green Associate

ARTIFICIAL-LEAFThe latest in solar technology is unlike what you would expect. Traditionally, solar cells harness sunlight and convert it into electricity, which is then stored in batteries. This is one of the cleanest forms of renewable energy that can be used to power your home or business. This type of solar cell isn’t going away any time soon, but a different type engineered recently by researchers at the University of Illinois is capable of doing the work of plants. This new solar cell could be a game-changer as it “cheaply and efficiently converts atmospheric carbon dioxide directly into usable hydrocarbon fuel” according to Solar Daily. The process is powered entirely by sunlight and requires no battery storage.

What does this new solar cell mean as far as real world problem solving? The benefits are two-fold. If entire solar farms were made up of these so-called artificial leaves, it could greatly reduce the amount of carbon in the atmosphere while simultaneously generating energy-rich fuel. Essentially, we can reverse some of the climate change damage done from burning fossil fuels and decrease the concentration of atmospheric CO2.

The product of this process is synthesis gas or syngas, which can be burned itself or converted into other hydrocarbon fuels. The artificial leaves convert carbon dioxide into fuel at a cost comparable to one gallon of gasoline. Read below for an explanation of the chemical process that made this possible as explained by Solar Daily:

“The new solar cell is not photovoltaic – it’s photosynthetic,” says Amin Salehi-Khojin, assistant professor of mechanical and industrial engineering at UIC and senior author on the study.

Chemical reactions that convert CO2 into burnable forms of carbon are called reduction reactions, the opposite of oxidation or combustion. Engineers have been exploring different catalysts to drive CO2 reduction, but so far such reactions have been inefficient and rely on expensive precious metals such as silver, Salehi-Khojin said.

“What we needed was a new family of chemicals with extraordinary properties,” he said.

Salehi-Khojin and his coworkers focused on a family of nano-structured compounds called transition metal dichalcogenides – or TMDCs – as catalysts, pairing them with an unconventional ionic liquid as the electrolyte inside a two-compartment, three-electrode electrochemical cell. The best of several catalysts they studied turned out to be nanoflake tungsten diselenide.

“The new catalyst is more active; more able to break carbon dioxide’s chemical bonds,” said UIC postdoctoral researcher Mohammad Asadi. In fact, he said, the new catalyst is 1,000 times faster than noble­metal catalysts — and about 20 times cheaper.

solar farm panelsThis is truly a breakthrough in the field of solar technology that can have large and small-scale applications. This is the first solar cell that could render fossil fuels obsolete based on its affordability and efficiency. Fuel could be produced locally as opposed to relying on unstable regions. Scientists have been working since the first ‘artificial leaf’ was produced last year to find a cost-effective process that uses only sunlight and carbon dioxide to mimic the natural process of photosynthesis in plants to produce fuel, and it appears they finally have something that will stick.

Emerald Skyline is always looking for ways to provide superior products and services to meet our client’s needs. My bachelor’s degree in biology allows me to bring a unique perspective on sustainability and mimicking the biological processes found in nature within the built environment. This allows us to provide our clients the latest technologies and largest and most open network available today.

Information on Emerald Skyline is available on our website: www.emeraldskyline.com.